期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于堆叠稀疏自编码的模糊C-均值聚类算法 被引量:9
1
作者 段宝彬 韩立新 谢进 《计算机工程与应用》 CSCD 北大核心 2015年第4期154-157,共4页
针对模糊C-均值聚类算法对孤立点、随机初始化的聚类中心比较敏感的问题,将堆叠稀疏自编码与传统模糊C-均值聚类算法相结合,对传统模糊C-均值聚类算法进行了改进。由于堆叠稀疏自编码可以提取原始数据集从低层到高层的特征,而高层的特... 针对模糊C-均值聚类算法对孤立点、随机初始化的聚类中心比较敏感的问题,将堆叠稀疏自编码与传统模糊C-均值聚类算法相结合,对传统模糊C-均值聚类算法进行了改进。由于堆叠稀疏自编码可以提取原始数据集从低层到高层的特征,而高层的特征通常比原始数据集更能反映待聚类样本的本质特征,用其代替原始数据集进行聚类,有助于提高聚类的效果。利用改进后的算法在UCI的几个标准数据集上进行实验,结果表明改进后的算法是有效可行的。 展开更多
关键词 堆叠稀疏编码 模糊C-均值聚类 特征 深度学习
下载PDF
网络流量异常检测方法:SSAE-IWELM-AdaBoost 被引量:9
2
作者 李小剑 谢晓尧 徐洋 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2020年第2期126-134,共9页
针对传统入侵检测方法在高维海量数据且类别分布不均衡的环境下检测性能较差的问题,提出一种流量异常检测方法SSAE-IWELM-AdaBoost,该方法基于堆叠稀疏自编码网络(stacked spare auto encoder,SSAE)并融合改进加权极限学习机(weighted e... 针对传统入侵检测方法在高维海量数据且类别分布不均衡的环境下检测性能较差的问题,提出一种流量异常检测方法SSAE-IWELM-AdaBoost,该方法基于堆叠稀疏自编码网络(stacked spare auto encoder,SSAE)并融合改进加权极限学习机(weighted extreme learning machine,WELM)。该方法首先使用堆叠稀疏自编码网络直接从原始流量数据中自动学习并提取特征,获取原始数据的低维抽象表示,然后以WELM作为集成算法(AdaBoost)的基础分类器,利用修改的训练样本权值分配规则和基分类器权值更新公式迭代训练基分类器,通过加权投票表决的方法得到最优强分类器完成网络攻击流量的识别。在UNSW-NB15数据集上进行仿真实验,实验结果表明,SSAE-IWELM-AdaBoost算法可以提高整体的检测精度以及小样本攻击的检测率,缩短分类器的训练时间,能较好地满足大规模网络环境下原始流量数据实时检测,对不均衡流量数据识别也具有较好的表现。 展开更多
关键词 网络流量异常检测 堆叠稀疏编码 加权极限学习机 集成算法 深度学习
原文传递
基于VMD-样本熵和SSAE的齿轮故障诊断 被引量:9
3
作者 徐飞 蒋占四 黄惠中 《组合机床与自动化加工技术》 北大核心 2020年第8期39-42,47,共5页
针对旋转机械中齿轮故障非线性、非平稳并伴有一定的噪声干扰的特点,文章提出一种基于变分模态分解(Variational mode decomposition,VMD)和堆叠稀疏自编码(Stack sparse auto encoder,SSAE)的齿轮故障诊断方法。将原始齿轮振动信号由... 针对旋转机械中齿轮故障非线性、非平稳并伴有一定的噪声干扰的特点,文章提出一种基于变分模态分解(Variational mode decomposition,VMD)和堆叠稀疏自编码(Stack sparse auto encoder,SSAE)的齿轮故障诊断方法。将原始齿轮振动信号由一维转化为二维信号,对二维信号每一行进行VMD分解得到若干有限带宽的内禀模态分量(Bandwidth limited intrinsic mode function,BLIMF),比较各模态分量的样本熵,选择样本熵最大的模态分量构成特征向量。将特征向量作为SSAE的输入进行模式识别,最终实现齿轮故障的分类。通过实例验证及对比实验,结果表明该方法具有较高的分类精度和诊断效率。 展开更多
关键词 变分模态分解 样本熵 堆叠稀疏编码 齿轮故障
下载PDF
堆叠稀疏自编码深度神经网络算法及其在滚动轴承故障诊断中的应用 被引量:5
4
作者 刘自然 李谦 +1 位作者 颜丙生 尚坤 《机床与液压》 北大核心 2020年第23期208-213,共6页
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特... 针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率。 展开更多
关键词 堆叠稀疏编码 深度神经网络 滚动轴承 故障诊断
下载PDF
基于堆叠稀疏自编码和谱聚类分析的带式输送机托辊故障诊断
5
作者 缪江华 苑静科 王文硕 《煤矿机械》 2024年第7期163-166,共4页
针对煤矿带式输送机托辊故障数据庞大、可变性强等特点,以工业现场采集的音频数据为基础,对数据进程预处理,选用4个隐藏层,采用每层节点数分别为128、32、16、8的自编码模型进行特征值提取,计算出各特征值的相关性,提取偏度、均值、峭... 针对煤矿带式输送机托辊故障数据庞大、可变性强等特点,以工业现场采集的音频数据为基础,对数据进程预处理,选用4个隐藏层,采用每层节点数分别为128、32、16、8的自编码模型进行特征值提取,计算出各特征值的相关性,提取偏度、均值、峭度、峰值、波数和过零率6个特征,采用K-means算法和谱聚类算法进行故障诊断对比分析,建立故障诊断分级标准。实验结果表明,堆叠稀疏自编码提取特征优于时域特征,能够有效过滤干扰信息;基于堆叠稀疏自编码提取的特征值的谱聚类算法对于故障分为4类时效果最佳,故障诊断准确率高达96%。 展开更多
关键词 堆叠稀疏编码 谱聚类算法 特征值 故障诊断
下载PDF
基于堆叠稀疏自编码深度神经网络的软件老化识别
6
作者 王子禁 严家兴 +1 位作者 黄珊 苏韦伟 《高校实验室工作研究》 2018年第3期48-51,共4页
随着高校加大对教学科研的投入,很多实验室都购买了服务器。但是在使用过程中,不可避免的会出现软件老化现象,极大干扰了日常的教学与科研。基于深度学习强大的特征自提取能力,提出一种基于堆叠稀疏自编码深度神经网络的软件老化识别方... 随着高校加大对教学科研的投入,很多实验室都购买了服务器。但是在使用过程中,不可避免的会出现软件老化现象,极大干扰了日常的教学与科研。基于深度学习强大的特征自提取能力,提出一种基于堆叠稀疏自编码深度神经网络的软件老化识别方法。该方法首先将实验采集到的软件性能数据划分为正常、中间态以及老化三种软件系统状态。随机选取其中的70%作为训练数据,用于训练网络的权值和偏置参数,根据训练出的参数确立最优分类模型,利用剩余的30%作为测试数据,验证该网络的有效性。实验分析表明,该方法具有较高的识别率,能够有效的应用于软件老化的识别。 展开更多
关键词 软件老化 深度学习 堆叠稀疏编码
下载PDF
基于堆叠稀疏自编码的滚动轴承故障诊断 被引量:12
7
作者 侯荣涛 周子贤 +2 位作者 赵晓平 谢阳阳 王丽华 《轴承》 北大核心 2018年第3期49-54,60,共7页
针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最... 针对机械设备故障数据大容量、多样性的特点,提出一种基于堆叠稀疏自编码(SSAE)的滚动轴承故障智能诊断方法。使用自动编码器(AE)逐层训练网络,从海量数据中自适应地学习各类故障的特征表达,再通过有监督的反向传播算法优化整个网络,最终将特征输入softmax分类器实现滚动轴承健康状况精确诊断。在动力传动故障诊断试验台采集了5类轴承故障数据进行测试。试验结果表明:SSAE算法能够有效地提取故障特征,且故障诊断效果优于传统智能诊断方法。 展开更多
关键词 滚动轴承 深度学习 堆叠稀疏编码算法 故障诊断
下载PDF
考虑惯量中心频率偏移的自编码器暂态稳定评估 被引量:12
8
作者 赵冬梅 王闯 +1 位作者 谢家康 马泰屹 《电网技术》 EI CSCD 北大核心 2022年第2期662-670,共9页
针对传统深度学习方法评估电力系统暂态稳定时没有考虑电力系统物理特性的问题,提出一种考虑系统惯量中心频率偏移量的电力系统暂态稳定评估方法。通过计算电力系统故障后的惯量中心频率偏移量,将样本进行分类,分别用堆叠稀疏自编码器... 针对传统深度学习方法评估电力系统暂态稳定时没有考虑电力系统物理特性的问题,提出一种考虑系统惯量中心频率偏移量的电力系统暂态稳定评估方法。通过计算电力系统故障后的惯量中心频率偏移量,将样本进行分类,分别用堆叠稀疏自编码器进行训练。当系统网架结构发生改变时,采用迁移成分分析法结合惯量中心频率偏移量对分类器进行更新。通过新英格兰10机39节点系统上的仿真结果表明所提方法比传统深度学习方法及迁移学习方法精度更高、泛化性能更强。当部分同步向量测量单元缺失以及数据中含有噪声时也能取得很好的效果。 展开更多
关键词 深度学习 电力系统 惯量中心频率 暂态稳定 堆叠稀疏编码
下载PDF
基于后验分布信息的SSAE暂态稳定评估模型倾向性修正方法 被引量:7
9
作者 林楠 王怀远 陈启凡 《电力自动化设备》 EI CSCD 北大核心 2022年第3期135-141,共7页
为了解决样本不平衡带来的评估倾向性问题,从深度学习模型的损失函数出发,分析样本不平衡对评估模型的影响,发现训练过程中的损失函数值能够反映样本的不平衡程度,由此提出基于样本后验分布信息的代价敏感修正方法。通过预先训练获得样... 为了解决样本不平衡带来的评估倾向性问题,从深度学习模型的损失函数出发,分析样本不平衡对评估模型的影响,发现训练过程中的损失函数值能够反映样本的不平衡程度,由此提出基于样本后验分布信息的代价敏感修正方法。通过预先训练获得样本的后验分布信息,引入稳定样本与不稳定样本的损失函数均值比得到修正系数;将修正系数通过代价敏感法修正模型的损失函数,重新对模型进行训练,从而修正模型的评估倾向性。相较于传统方法,该方法从模型的训练机理上量化了样本的不平衡程度,修正系数综合考虑了样本数量与空间分布的不平衡对模型参数的影响,实现了更好的修正效果。IEEE 39节点系统和华东某区域系统的仿真结果验证了所提方法的有效性。 展开更多
关键词 深度学习 暂态稳定评估 代价敏感 后验分布信息 堆叠稀疏编码 不平衡样本
下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:1
10
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏编码网络 变分模态分解 K-最近邻分类器 适应特征提取 状态识别
下载PDF
基于梯度范数的暂态稳定评估模型的不平衡修正方法
11
作者 胡力涛 王怀远 +2 位作者 党然 童浩轩 张旸 《电力自动化设备》 EI CSCD 北大核心 2024年第4期158-163,177,共7页
为了解决电力系统中样本数量和质量不平衡造成的暂态稳定评估偏差问题,从评估模型的训练过程出发,通过预训练模型获得样本对模型参数修正的梯度范数,引入梯度范数均值比量化样本的不平衡程度,相较于先验信息,梯度范数均值比综合考虑了... 为了解决电力系统中样本数量和质量不平衡造成的暂态稳定评估偏差问题,从评估模型的训练过程出发,通过预训练模型获得样本对模型参数修正的梯度范数,引入梯度范数均值比量化样本的不平衡程度,相较于先验信息,梯度范数均值比综合考虑了样本数量与样本质量的不平衡,并提出基于代价敏感法的不平衡修正方法,利用该方法改善模型的评估倾向性,以实现较好的修正效果。IEEE39节点系统和华东电网系统的仿真结果验证了所提方法的有效性。 展开更多
关键词 深度学习 暂态稳定评估 代价敏感 梯度范数 堆叠稀疏编码 不平衡样本
下载PDF
基于堆叠稀疏自编码器和深度森林的窃电检测模型 被引量:3
12
作者 李双伟 付慧 +3 位作者 史明明 王靓 费骏韬 缪惠宇 《供用电》 2023年第5期77-83,99,共8页
为了提高窃电检测模型的检出率和准确率,提出一种基于堆叠稀疏自编码器和深度森林的窃电检测模型。通过使用用户用电量数据训练堆叠稀疏自编码器,以降低总体重建误差为目标,确定堆叠稀疏自编码器的层数及隐藏层输出向量维度,实现对用户... 为了提高窃电检测模型的检出率和准确率,提出一种基于堆叠稀疏自编码器和深度森林的窃电检测模型。通过使用用户用电量数据训练堆叠稀疏自编码器,以降低总体重建误差为目标,确定堆叠稀疏自编码器的层数及隐藏层输出向量维度,实现对用户用电特征更有效的提取。将最后一层稀疏编码器隐藏层的输出向量作为深度森林的输入特征向量,对输入特征向量进行多粒度扫描,使用级联森林实现特征深度融合与窃电检测。基于某市6000个用户用电量数据对该模型的性能进行验证,实验结果表明,对比其他经典窃电检测模型,所提窃电检测模型具有更高的检出率和准确率。 展开更多
关键词 用电量 堆叠稀疏编码 深度森林 窃电检测 特征提取
下载PDF
深度学习与多信号融合在铣刀磨损状态识别中的研究 被引量:4
13
作者 穆殿方 刘献礼 +4 位作者 岳彩旭 Steven Y.LIANG 陈志涛 李恒帅 徐梦迪 《机械科学与技术》 CSCD 北大核心 2021年第10期1581-1589,共9页
为精确地识别刀具磨损状态,提出了一种深度学习与多信号融合相结合的识别方法。以自编码网络为基础,构建了堆叠稀疏自编码网络。采集铣刀不同磨损状态下的力信号、振动信号及声发射信号,并对上述信号进行小波包分解以便获取能够表征铣... 为精确地识别刀具磨损状态,提出了一种深度学习与多信号融合相结合的识别方法。以自编码网络为基础,构建了堆叠稀疏自编码网络。采集铣刀不同磨损状态下的力信号、振动信号及声发射信号,并对上述信号进行小波包分解以便获取能够表征铣刀磨损的时频域特征。利用无监督学习和有监督学习对堆叠稀疏自编码网络进行训练,建立了深度学习的铣刀磨损状态识别模型。研究结果表明,多信号融合的深度学习模型对铣刀磨损状态识别准确率达到94.44%。 展开更多
关键词 刀具磨损 状态识别 深度学习 多信号融合 堆叠稀疏编码网络
下载PDF
自适应类增量学习的物联网入侵检测系统 被引量:3
14
作者 刘强 张颖 +3 位作者 周卫祥 蒋先涛 周薇娜 周谋国 《计算机工程》 CAS CSCD 北大核心 2023年第2期169-174,共6页
传统物联网入侵检测系统难以实时检测新类别攻击,为此,提出一种基于堆叠稀疏自编码器(SSAE)和自组织增量神经网络(SOINN)的物联网入侵检测方法。SSAE对已知类别的攻击样本进行稀疏编码和特征提取,所提取的特征输入SOINN,SOINN形成符合... 传统物联网入侵检测系统难以实时检测新类别攻击,为此,提出一种基于堆叠稀疏自编码器(SSAE)和自组织增量神经网络(SOINN)的物联网入侵检测方法。SSAE对已知类别的攻击样本进行稀疏编码和特征提取,所提取的特征输入SOINN,SOINN形成符合流量特征空间分布的拓扑结构。当出现新类别训练样本的特征时,SOINN自适应地生成新节点以建立新的局部拓扑结构。为了保留SSAE在旧类别样本上的知识,对SOINN已有的拓扑结构施加约束,通过误差反向传递间接约束SSAE权重的变化。针对SOINN在新类别上产生的新局部拓扑结构进行自适应聚合和优化,从而实现新类别样本学习。实验结果表明,该方法能基于新类别数据对模型进行增量训练而无需历史类别数据,在CIC-IDS2017数据集的动态数据流中能有效检测新类别攻击同时缓解旧类别数据中存在的灾难性遗忘问题,在初始已知数据集上的准确率达到98.15%,完成3个阶段的类别增量学习后整体准确率仍能达到57.34%,优于KNN-SVM、mCNN等增量学习方法。 展开更多
关键词 入侵检测系统 堆叠稀疏编码 组织增量神经网络 增量学习 知识保留
下载PDF
基于融合模型的网络安全态势感知方法
15
作者 郭尚伟 刘树峰 +3 位作者 李子铭 欧阳德强 王宁 向涛 《计算机工程》 CAS CSCD 北大核心 2024年第11期1-9,共9页
伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在... 伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在数据特征提取及较长时间序列数据处理能力不足的问题,提出一种融合堆栈稀疏自编码器(SSAE)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AM)的模型。通过SSAE和CNN提取数据特征,利用AM强化BiGRU对关键信息的关注度,实现对异常流量的攻击类别判定,并结合网络安全态势量化指标,对网络安全态势进行量化评分并划分等级。实验结果表明,融合模型在各项指标上均优于传统深度学习模型,能够准确感知网络态势。 展开更多
关键词 态势感知 威胁检测 堆叠稀疏编码 卷积神经网络 双向门控循环单元 注意力机制
下载PDF
基于复杂特征提取和Sinkhorn距离的风光荷多阶段场景树生成方法
16
作者 王蕊 傅质馨 +1 位作者 王健 刘皓明 《中国电力》 CSCD 北大核心 2024年第12期30-40,共11页
新能源发电出力和负荷长期增长的不确定性增加了电网规划复杂性,开展新能源出力和负荷长时间尺度上的不确定性分析,对电网的规划与建设具有重要意义。提出了一种基于复杂特征提取和Sinkhorn距离的风光荷多阶段场景树生成方法。首先,为... 新能源发电出力和负荷长期增长的不确定性增加了电网规划复杂性,开展新能源出力和负荷长时间尺度上的不确定性分析,对电网的规划与建设具有重要意义。提出了一种基于复杂特征提取和Sinkhorn距离的风光荷多阶段场景树生成方法。首先,为提高风光荷场景的聚类效率,提出基于堆叠稀疏自编码器的风光荷场景特征提取方法,并采用基于密度峰值改进的近邻传播算法对风光荷场景特征集合进行聚类,获得风光荷典型曲线,作为场景树的根节点;然后,考虑负荷不同增长率,逐年生成风光荷场景树,并提出基于Sinkhorn距离的场景树削减方法以降低场景树的规模;最后,算例仿真结果表明,所提方法计算效率高,生成的风光荷多阶段场景树可反映风光出力和负荷增长的不确定性。 展开更多
关键词 场景树 堆叠稀疏编码 改进近邻传播算法 Sinkhorn距离 负荷不确定性
下载PDF
基于DVMD和SSAE的柴油机混合故障诊断 被引量:4
17
作者 白雲杰 贾希胜 梁庆海 《振动与冲击》 EI CSCD 北大核心 2022年第11期271-277,297,共8页
针对柴油机缸盖振动信号非平稳非线性的特点,提出一种基于散布熵改进的变分模态分解(DVMD)和堆叠稀疏自编码器(SSAE)相结合的柴油机混合故障诊断方法。利用散布熵确定变分模态分解的层数K,并根据散布熵转折点选取有效模态分量。分别对... 针对柴油机缸盖振动信号非平稳非线性的特点,提出一种基于散布熵改进的变分模态分解(DVMD)和堆叠稀疏自编码器(SSAE)相结合的柴油机混合故障诊断方法。利用散布熵确定变分模态分解的层数K,并根据散布熵转折点选取有效模态分量。分别对选取的各模态分量提取常用14个时域特征和小波包分解后的能量特征,构建混合多特征向量,输入基于堆叠稀疏自编码器和Softmax层构建的深度神经网络(DNN)中,实现了柴油机7种混合故障模式识别。与其他常见方法进行对比,结果表明该方法能够有效提取故障特征,具有较高的诊断准确率。 展开更多
关键词 变分模态分解 堆叠稀疏编码 柴油机 故障诊断
下载PDF
基于堆叠稀疏自编码器的多缸喷油器堵塞定位算法
18
作者 王健 黄英 +3 位作者 高晓宇 王拓 王绪 惠嘉赫 《兵工学报》 EI CAS CSCD 北大核心 2024年第10期3706-3717,共12页
燃油喷射系统的工作质量直接影响柴油机工作过程及性能,针对多缸机不同喷油器发生堵塞故障且故障程度不一时,传统故障诊断方法难以精准定位故障喷油器的问题,提出一种基于堆叠稀疏自编码器(Stacked Sparse Autoencoder,SSAE)的故障定位... 燃油喷射系统的工作质量直接影响柴油机工作过程及性能,针对多缸机不同喷油器发生堵塞故障且故障程度不一时,传统故障诊断方法难以精准定位故障喷油器的问题,提出一种基于堆叠稀疏自编码器(Stacked Sparse Autoencoder,SSAE)的故障定位算法。通过SSAE提取不同喷油器发生堵塞故障时轨压信号的深层特征,以softmax网络实现故障部件定位。以一维轨压信号为输入,故障喷油器定位为输出,并研究算法超参数对算法精度的影响。研究结果表明,此算法能精准定位发生堵塞故障的喷油器,且精度不受堵塞程度的影响,故障诊断正确率可达96.7%。 展开更多
关键词 高压共轨 不同喷油器堵塞 堆叠稀疏编码 故障定位
下载PDF
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类
19
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏编码器(SSAE) 深度特征提取 缩放共轭梯度(SCG) 前馈神经网络(FFNN)
下载PDF
基于山区大气电场演变特征与雷电定位数据的雷电临近预警方法
20
作者 齐玥 杨庆 +2 位作者 王科 胡逸 徐肖伟 《高电压技术》 EI CAS CSCD 北大核心 2024年第10期4760-4771,共12页
由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法... 由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法。通过分析典型高原山区不同雷暴发展情况下的大气电场演化特性,发现山区大气电场可作为雷电定位数据的补充源,充分表征雷云剧烈放电和雷暴临近发展的特征信息。在预警过程中,首先将大气电场形态学梯度提取的快速抖动、暂态突变特征与时空匹配的地闪活动特征输入堆叠稀疏自编码器网络模型,判断监测区域附近是否出现雷云放电迹象,再利用雷暴距离变化或者电场波形变化判断雷电活动的临近趋势,最后综合两者的结果完成半径15km监测区域的雷电活动短时预警。在2023年云南山区雷雨季节的雷暴算例分析中,通过双源数据共同提取的山区雷暴活动预警特征的有效识别,可以实现预警准确率为90%,约44%的警报提前时间不小于30 min。 展开更多
关键词 高原山区 大气电场特征 雷电定位数据 雷电临近预警 堆叠稀疏编码器网络
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部