期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SVM和DS证据理论融合多特征的玉米病害识别研究
被引量:
18
1
作者
毛彦栋
宫鹤
《中国农机化学报》
北大核心
2020年第4期152-157,共6页
针对玉米叶部病害图像的颜色、纹理、形状特征对病害影响的差异性,提出一种结合单特征下的SVM识别准确率和识别结果的融合多特征玉米病害识别方法。首先对预处理后的玉米病害图片提取颜色、纹理、形状3种特征,对应每一种特征构建一个SV...
针对玉米叶部病害图像的颜色、纹理、形状特征对病害影响的差异性,提出一种结合单特征下的SVM识别准确率和识别结果的融合多特征玉米病害识别方法。首先对预处理后的玉米病害图片提取颜色、纹理、形状3种特征,对应每一种特征构建一个SVM分类器,结合3个SVM分类器的平均准确率和识别结果作为证据理论的3个证据,构建D-S证据理论的基本概率分配函数(BPA),最后根据D-S证据理论决策规则进行决策级融合,依据决策条件输出最终识别结果。结果表明,结合SVM识别准确率和识别结果来对玉米的灰斑病、弯孢菌叶斑病、锈病三种病害进行识别,准确率分别为95%,85%,100%,平均准确率为93.33%,该方法对玉米叶部病害的识别更准确和稳定。
展开更多
关键词
多特征
病害识别
D-S证据理论
支持向量机
基本
概率函数
下载PDF
职称材料
题名
基于SVM和DS证据理论融合多特征的玉米病害识别研究
被引量:
18
1
作者
毛彦栋
宫鹤
机构
吉林农业大学信息技术学院
吉林省智能环境工程研究中心
吉林省农业物联网科技协同创新中心
出处
《中国农机化学报》
北大核心
2020年第4期152-157,共6页
基金
吉林省教育厅项目(20170204038NY)
吉林省发改委项目(2014Y108)
长春市科技局项目(12SF31)。
文摘
针对玉米叶部病害图像的颜色、纹理、形状特征对病害影响的差异性,提出一种结合单特征下的SVM识别准确率和识别结果的融合多特征玉米病害识别方法。首先对预处理后的玉米病害图片提取颜色、纹理、形状3种特征,对应每一种特征构建一个SVM分类器,结合3个SVM分类器的平均准确率和识别结果作为证据理论的3个证据,构建D-S证据理论的基本概率分配函数(BPA),最后根据D-S证据理论决策规则进行决策级融合,依据决策条件输出最终识别结果。结果表明,结合SVM识别准确率和识别结果来对玉米的灰斑病、弯孢菌叶斑病、锈病三种病害进行识别,准确率分别为95%,85%,100%,平均准确率为93.33%,该方法对玉米叶部病害的识别更准确和稳定。
关键词
多特征
病害识别
D-S证据理论
支持向量机
基本
概率函数
Keywords
multiple features
disease identification
D-S evidence theory
SVM
BPA
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
S435.132 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SVM和DS证据理论融合多特征的玉米病害识别研究
毛彦栋
宫鹤
《中国农机化学报》
北大核心
2020
18
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部