期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SVM和DS证据理论融合多特征的玉米病害识别研究 被引量:18
1
作者 毛彦栋 宫鹤 《中国农机化学报》 北大核心 2020年第4期152-157,共6页
针对玉米叶部病害图像的颜色、纹理、形状特征对病害影响的差异性,提出一种结合单特征下的SVM识别准确率和识别结果的融合多特征玉米病害识别方法。首先对预处理后的玉米病害图片提取颜色、纹理、形状3种特征,对应每一种特征构建一个SV... 针对玉米叶部病害图像的颜色、纹理、形状特征对病害影响的差异性,提出一种结合单特征下的SVM识别准确率和识别结果的融合多特征玉米病害识别方法。首先对预处理后的玉米病害图片提取颜色、纹理、形状3种特征,对应每一种特征构建一个SVM分类器,结合3个SVM分类器的平均准确率和识别结果作为证据理论的3个证据,构建D-S证据理论的基本概率分配函数(BPA),最后根据D-S证据理论决策规则进行决策级融合,依据决策条件输出最终识别结果。结果表明,结合SVM识别准确率和识别结果来对玉米的灰斑病、弯孢菌叶斑病、锈病三种病害进行识别,准确率分别为95%,85%,100%,平均准确率为93.33%,该方法对玉米叶部病害的识别更准确和稳定。 展开更多
关键词 多特征 病害识别 D-S证据理论 支持向量机 基本概率函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部