Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established acco...Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen’s falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up regulated and 23 genes down regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.展开更多
Maize (Zea raays L.) is one of the most important crops because of the remarkable properties of its hybrid, which is responsible for the high commercial value of hybrid maize. The genetic basis of heterosis (hybrid...Maize (Zea raays L.) is one of the most important crops because of the remarkable properties of its hybrid, which is responsible for the high commercial value of hybrid maize. The genetic basis of heterosis (hybrid vigor) is not well understood. A differential display technique was performed to identify genes with differential expression across twelve maize inbred lines and thirty-three hybrids during ear development. An incomplete diallel design was used to investigate the relationship between the global framework of differential gene expression and heterosis. It was found that the genes belonging to MONO pattern (i.e., genes expressed in both parental lines and in hybrid) was the highest in percentage among the total five patterns and illustrated that the properties of differentially expressed genes are not entirely responsible for heterosis. Furthermore,a larger number of differentially expressed genes in hybrid, which serves as a major reservoir for generating novel phenotypes that exhibit heterosis of certain agronomic traits during early development and differentiation of maize ear. Moreover, there were some silent genesin hybrids that are responsible for the arrest or abortion of spikelets and for the increase in kernels weight.展开更多
文摘Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen’s falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up regulated and 23 genes down regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.
文摘Maize (Zea raays L.) is one of the most important crops because of the remarkable properties of its hybrid, which is responsible for the high commercial value of hybrid maize. The genetic basis of heterosis (hybrid vigor) is not well understood. A differential display technique was performed to identify genes with differential expression across twelve maize inbred lines and thirty-three hybrids during ear development. An incomplete diallel design was used to investigate the relationship between the global framework of differential gene expression and heterosis. It was found that the genes belonging to MONO pattern (i.e., genes expressed in both parental lines and in hybrid) was the highest in percentage among the total five patterns and illustrated that the properties of differentially expressed genes are not entirely responsible for heterosis. Furthermore,a larger number of differentially expressed genes in hybrid, which serves as a major reservoir for generating novel phenotypes that exhibit heterosis of certain agronomic traits during early development and differentiation of maize ear. Moreover, there were some silent genesin hybrids that are responsible for the arrest or abortion of spikelets and for the increase in kernels weight.