期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模型深度特征集成的水声目标识别方法 被引量:1
1
作者 李俊豪 杨宏晖 刘钰淇 《无人系统技术》 2023年第4期69-75,共7页
基于深度学习的水声目标识别算法表现出强大的数据分布拟合能力,已经成为研究重点和热点。深度模型的拟合能力与其复杂度正相关,但过于复杂的模型会显著增加计算成本。综合考虑识别性能以及计算成本,提出了基于多模型深度特征集成的水... 基于深度学习的水声目标识别算法表现出强大的数据分布拟合能力,已经成为研究重点和热点。深度模型的拟合能力与其复杂度正相关,但过于复杂的模型会显著增加计算成本。综合考虑识别性能以及计算成本,提出了基于多模型深度特征集成的水声目标识别方法。首先利用预训练好的深层模型提取深度特征,再利用特征压缩和集成方法将深度特征融合到浅层模型中,通过改变集成的深度特征维度构建多个深度特征集成模型作为子模型,最后多个子模型通过加权投票实现目标识别。实验结果表明,提出方法的平均正确识别率比对比方法提高了0.37%~5.46%,同时参数量仅为Xception的1/34。 展开更多
关键词 水声目标识别 机器学习 深度学习 集成学习 基于深度模型集成学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部