期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Mapping Soil Texture of a Plain Area Using Fuzzy-c-Means Clustering Method Based on Land Surface Diurnal Temperature Difference 被引量:7
1
作者 WANG De-Cai ZHANG Gan-Lin +3 位作者 PAN Xian-Zhang ZHAO Yu-Guo ZHAO Ming-Song WANG Gai-Fen 《Pedosphere》 SCIE CAS CSCD 2012年第3期394-403,共10页
The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method wa... The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method was implemented to map regional soil texture (in terms of sand, silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input. To examine this hypothesis, the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period, i.e., after a heavy rainfall between autumn harvest and autumn sowing, were classified using fuzzy-c-means (FCM) clustering. Six classes were generated, and for each class, the sand (〉 0.05 mm), silt (0.002-0.05 mm) and clay (〈 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class. A weighted average model was then used to digitally map soil texture. The results showed that the predicted map quite accurately reflected the regional soil variation. A validation dataset produced estimates of error for the predicted maps of sand, silt and clay contents at root mean of squared error values of 8.4%, 7.8% and 2.3%, respectively, which is satisfactory in a practical context. This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources. 展开更多
关键词 digital soil mapping land surface temperature low relief area MODIS remote sensing
原文传递
Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods 被引量:6
2
作者 Danial BEHNIA Kaveh AHANGARI +1 位作者 Ali NOORZAD Sayed Rahim MOEINOSSADAT 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第8期589-602,共14页
This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the b... This paper deals with the estimation of crest settlement in a concrete face rockfill dam (CFRD), utilizing intelligent methods. Following completion of dam construction, considerable movements of the crest and the body of the dam can develop during the first impoundment of the reservoir. Although there is vast experience worldwide in CFRD design and construction, few accurate experimental relationships are available to predict the settlement in CFRD. The goal is to advance the development of intelligent methods to estimate the subsidence of dams at the design stage. Due to dam zonifieation and uncertainties in material properties, these methods appear to be the appropriate choice. In this study, the crest settlement behavior of CFRDs is analyzed based on compiled data of 24 CFRDs constructed during recent years around the world, along with the utilization of gene ex- pression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS) methods. In addition, dam height (H), shape factor (St), and time (t, time after first operation) are also assessed, being considered major factors in predicting the settlement behavior. From the relationships proposed, the values ofR2 for both equations of GEP (with and without constant) were 0.9603 and 0.9734, and for the three approaches of ANFIS (grid partitioning (GP), subtractive clustering method (SCM), and fuzzy c-means clustering (FCM)) were 0.9693, 0.8657, and 0.8848, respectively. The obtained results indicate that the overall behavior evaluated by this approach is consistent with the measured data of other CFRDs. 展开更多
关键词 concrete face rockfill dam cFRD) crest settlement Adaptive neuro-fuzzy inference system (ANFIS) Geneexpression programming (GEP)
原文传递
基于BEMD和灰度共生矩阵的图像特征提取 被引量:5
3
作者 龙鹏飞 贺亮 +1 位作者 吕回 张纯 《计算机工程与应用》 CSCD 北大核心 2009年第16期201-203,214,共4页
提出了一种新的图像特征提取方法,用二维经验模式分解将图像分解到固有模态函数(Intrinsic Mode Functions,IMF)域,即将图像分解成一系列的IMF和一个残差。并结合灰度共生矩阵对所提取到的各IMF图像和残差图像进行特征提取。为了验证算... 提出了一种新的图像特征提取方法,用二维经验模式分解将图像分解到固有模态函数(Intrinsic Mode Functions,IMF)域,即将图像分解成一系列的IMF和一个残差。并结合灰度共生矩阵对所提取到的各IMF图像和残差图像进行特征提取。为了验证算法的有效性,将其推广到像素级,对合成纹理和遥感图像进行了特征提取,并结合核模糊聚类(KFCM)算法对提取的特征向量做聚类分析,实现了图像的有效分割。 展开更多
关键词 二维经验模式分解 固有模态函数 灰度共生矩阵 合成纹理 遥感图像 基于模糊c-均值 图像分割
下载PDF
图像分割中模糊聚类数目的确定 被引量:7
4
作者 王备 王继成 《计算机技术与发展》 2007年第10期162-164,180,共4页
尽管模糊聚类是一种无监督的分类,但目前的FCM类型的算法却要求聚类原形参数的先验知识(原型数目及类型),否则算法就会产生误导,这就限制了在图像分割中的应用。因此需要对聚类数目给出一个判断算法。通过对图像的灰度直方图中加入它的... 尽管模糊聚类是一种无监督的分类,但目前的FCM类型的算法却要求聚类原形参数的先验知识(原型数目及类型),否则算法就会产生误导,这就限制了在图像分割中的应用。因此需要对聚类数目给出一个判断算法。通过对图像的灰度直方图中加入它的梯度信息,提出了灰度-梯度的二维直方图。该方法能有效地抑制噪声的干扰,更准确地得到聚类数目,使模糊聚类完全无监督化。 展开更多
关键词 灰度-梯度二维直方图 模糊c-均值 图像分割
下载PDF
供应商协同能力评价指标体系研究 被引量:6
5
作者 曾明华 王吟松 杨晓光 《计算机工程与应用》 CSCD 2014年第4期18-23,共6页
供应链协同已经成为供应链集团在与其他集团之间日趋激烈的竞争中创造竞争优势的势在必行的现代管理战略,供应商选择对供应链协同至关重要。通过控制进化种群划分与进化过程,利用压缩变异与Gauss变异设计一种组合变异方式,进而提出改进... 供应链协同已经成为供应链集团在与其他集团之间日趋激烈的竞争中创造竞争优势的势在必行的现代管理战略,供应商选择对供应链协同至关重要。通过控制进化种群划分与进化过程,利用压缩变异与Gauss变异设计一种组合变异方式,进而提出改进的模糊C-均值聚类遗传算法(IFCMGA);在初步确定面向供应链协同的供应商评价指标后,利用IFCMGA算法对供应商协同能力评价指标进行分类,构建了面向供应链协同的供应商评价指标体系。结合模糊层次分析法与重要指标筛选法进行指标分析和筛选以及指标体系重构,以为供应商评价与选择提供科学决策依据。 展开更多
关键词 供应链协同 供应商评价指标体系 组合变异 改进模糊c-均值遗传算法 指标筛选
下载PDF
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
6
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis K-means and FcM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
下载PDF
Accident Rate Estimation Modeling Based on Human Factors Using Fuzzy C-Means Clustering Algorithm
7
作者 Muhammad MAS Mahmoud Sorin Moraru 《通讯和计算机(中英文版)》 2012年第11期1298-1309,共12页
关键词 模糊c-均值算法 估计模型 事故率 人为因素 模型验证 数据收集 建筑公司 测试案例
下载PDF
Watershed classification by remote sensing indices: A fuzzy c-means clustering approach 被引量:10
8
作者 Bahram CHOUBIN Karim SOLAIMANI +1 位作者 Mahmoud HABIBNEJAD ROSHAN Arash MALEKIAN 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2053-2063,共11页
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident... Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures. 展开更多
关键词 Karkheh watershed Fuzzy c-means clustering Watershed classification Homogeneous sub-watersheds
下载PDF
模糊隶属度加权的KFCM脑MRI的组织分割方法 被引量:7
9
作者 赵海峰 陈书海 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第11期2055-2062,共8页
医学图像受成像机制的影响不可避免地会引入噪声.为解决传统医学图像分割算法对噪声敏感的问题,提出一种模糊隶属度加权的KFCM分割方法.该方法在传统KFCM算法基础上引入局部空间信息,定义了局部隶属度函数,并结合传统KFCM算法得到的全... 医学图像受成像机制的影响不可避免地会引入噪声.为解决传统医学图像分割算法对噪声敏感的问题,提出一种模糊隶属度加权的KFCM分割方法.该方法在传统KFCM算法基础上引入局部空间信息,定义了局部隶属度函数,并结合传统KFCM算法得到的全局隶属度函数构造加权隶属度函数,为每个像素计算隶属度值;进一步地,结合邻域信息,使用迭代聚合方法为每个像素重新分配隶属度值.选取Simulated Brain Database数据集,对加入不同噪声的图像进行实验的结果表明,该方法在保证对噪声鲁棒的同时,能够提高分割精度. 展开更多
关键词 基于函数模糊c均值 脑MRI 图像分割 函数
下载PDF
基于脉内特征的雷达信号分选新方法 被引量:7
10
作者 张治海 秦开兵 张元发 《现代防御技术》 北大核心 2009年第2期104-107,共4页
提出了一种基于脉内特征和基于核方法的模糊C-均值算法(KFCM)相结合的雷达信号分选方法。首先利用小波变换法提取雷达信号的脉内特征,然后基于KFCM对信号进行分选。计算机仿真表明,在满足一定信噪比的条件下,该方法可以准确地实现雷达... 提出了一种基于脉内特征和基于核方法的模糊C-均值算法(KFCM)相结合的雷达信号分选方法。首先利用小波变换法提取雷达信号的脉内特征,然后基于KFCM对信号进行分选。计算机仿真表明,在满足一定信噪比的条件下,该方法可以准确地实现雷达信号的分选。 展开更多
关键词 脉内特征 小波变换法 基于方法模糊c均值 信号分选
下载PDF
Research on Image Segmentation Algorithm based on Fuzzy C-mean Clustering
11
作者 Xiaona SONG Zuobing WANG 《International Journal of Technology Management》 2015年第2期28-30,共3页
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ... This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation. 展开更多
关键词 Image segmentation Fuzzy clustering Fuzzy c-means Spatial information ANTI-NOISE
下载PDF
一种鲁棒非平衡极速学习机算法 被引量:2
12
作者 孟凡荣 高春晓 刘兵 《计算机应用研究》 CSCD 北大核心 2014年第4期985-988,1004,共5页
极速学习机(ELM)算法只对平衡数据集分类较好,对于非平衡数据集,它通常偏向多数样本类,对于少数样本类性能较低。针对这一问题,提出了一种处理不平衡数据集分类的ELM模型(ELM-CIL),该模型按照代价敏感学习的原则为少数类样本赋予较大的... 极速学习机(ELM)算法只对平衡数据集分类较好,对于非平衡数据集,它通常偏向多数样本类,对于少数样本类性能较低。针对这一问题,提出了一种处理不平衡数据集分类的ELM模型(ELM-CIL),该模型按照代价敏感学习的原则为少数类样本赋予较大的惩罚系数,并引入模糊隶属度值减小了外围噪声点的影响。实验表明,提出的方法不仅对提高不平衡数据集中少数类的分类精度效果较明显,而且提高了对噪声的鲁棒性。 展开更多
关键词 极速学习机 不平衡数据集 基于可能性模糊c-均值 神经网络
下载PDF
改进的模糊C均值聚类算法 被引量:19
13
作者 刘坤朋 罗可 《计算机工程与应用》 CSCD 北大核心 2009年第21期97-98,188,共3页
把自适应的策略与传统的模糊C均值聚类算法结合起来,形成新的模糊聚类算法。在不影响收敛速度的情况下,它能够很好解决局部最优以及对初始值敏感的问题。以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,它的精确度与自适应... 把自适应的策略与传统的模糊C均值聚类算法结合起来,形成新的模糊聚类算法。在不影响收敛速度的情况下,它能够很好解决局部最优以及对初始值敏感的问题。以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,它的精确度与自适应免疫聚类算法相当,能够得到准确的簇的数目,并且它的收敛速度更快,这对于如今网络数据的高速变化来说,该方法显得更为重要。 展开更多
关键词 模糊c均值 自适应 调整
下载PDF
模糊颜色直方图在基于内容的图像检索中的应用研究 被引量:4
14
作者 解洪胜 王连国 孙玉芳 《计算机系统应用》 2009年第5期139-143,共5页
本文提出一种子模糊颜色直方图构造方法,采用模糊C均值聚类算法对彩色图像进行颜色聚类,利用模糊理论的隶属函数,通过计算每个像素对颜色聚类中心的隶属度构造颜色直方图,将得到的模糊颜色直方图作为表示彩色图像的特征向量进行基于内... 本文提出一种子模糊颜色直方图构造方法,采用模糊C均值聚类算法对彩色图像进行颜色聚类,利用模糊理论的隶属函数,通过计算每个像素对颜色聚类中心的隶属度构造颜色直方图,将得到的模糊颜色直方图作为表示彩色图像的特征向量进行基于内容的图像检索实验,实验结果表明本文提出的方法具有较高的检索准确率和研究价值。 展开更多
关键词 模糊颜色直方图 模糊c均值 基于内容图像检索 模糊理论
下载PDF
结合ECM和FCM聚类的遥感图像分割新方法 被引量:3
15
作者 杜根远 田胜利 苗放 《计算机应用研究》 CSCD 北大核心 2009年第10期3995-3997,共3页
模糊C均值算法(FCM)具有良好的聚类性能从而被广泛应用于图像分割领域,但其存在距离测度鲁棒性差、需预先给出初始聚类数目、未考虑图像局部相关特性等问题。本质上讲,FCM算法是一种局部搜索优化算法,如果初始值选择不当,不仅需要更多... 模糊C均值算法(FCM)具有良好的聚类性能从而被广泛应用于图像分割领域,但其存在距离测度鲁棒性差、需预先给出初始聚类数目、未考虑图像局部相关特性等问题。本质上讲,FCM算法是一种局部搜索优化算法,如果初始值选择不当,不仅需要更多的迭代次数,而且会收敛到局部最优解。针对上述问题,结合进化聚类(ECM)和FCM算法,提出了一种遥感图像分割的新方法。利用ECM解决模糊C均值聚类算法的初始化中心选择问题,再利用FCM算法对获得的聚类中心进行优化,完成模糊聚类划分,通过去模糊化转换为确定性分类,实现聚类分割。实验结果表明,该方法能以较少的迭代次数收敛到全局最优解,具有较好的稳定性和鲁棒性,有较好的分割效果,提高了遥感图像分割方法的效率。 展开更多
关键词 遥感图像分割 模糊c均值 进化 基于内容图像检索
下载PDF
广义回归神经网络在空间数据聚类中的应用 被引量:2
16
作者 卢建青 陈银珠 +1 位作者 刘玉珠 张锦 《导航定位学报》 CSCD 2020年第2期31-35,共5页
针对空间数据聚类中由于空间数据本身的特点造成模糊C均值聚类算法无法满足使用要求的问题,提出1种改进的空间数据聚类算法:将模糊C均值聚类算法与广义回归神经网络相结合,得到结合广义神经网络的模糊C均值聚类算法;并将结合广义神经网... 针对空间数据聚类中由于空间数据本身的特点造成模糊C均值聚类算法无法满足使用要求的问题,提出1种改进的空间数据聚类算法:将模糊C均值聚类算法与广义回归神经网络相结合,得到结合广义神经网络的模糊C均值聚类算法;并将结合广义神经网络的模糊C均值聚类算法应用到空间数据的聚类中。实验结果表明,结合广义神经网络的模糊C均值算法在空间聚类方面比模糊C均值有着更好的效果,可以满足实际空间数据聚类的要求。 展开更多
关键词 空间数据 空间 模糊c均值算法 结合广义神经网络模糊c均值算法 效果
下载PDF
利用空间信息的核模糊C均值聚类算法 被引量:3
17
作者 王丹丹 李彬 陈武凡 《计算机工程与应用》 CSCD 北大核心 2007年第33期82-83,111,共3页
模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻... 模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。 展开更多
关键词 图像分割 方法 模糊c均值算法 图像空间信息
下载PDF
模糊聚类再回归方法在机场噪声时间序列预测中的应用 被引量:1
18
作者 王丽娜 王建东 夏利 《小型微型计算机系统》 CSCD 北大核心 2014年第6期1401-1406,共6页
针对机场噪声的预测问题提出两种先模糊聚类再支持向量回归的时间序列预测方法.一种是模糊C均值聚类再回归,通过聚类将同簇样本限定在一定区域内,然后对同簇样本进行回归预测.另一种是基于阴影集的粗糙模糊C均值聚类再回归,通过聚类将... 针对机场噪声的预测问题提出两种先模糊聚类再支持向量回归的时间序列预测方法.一种是模糊C均值聚类再回归,通过聚类将同簇样本限定在一定区域内,然后对同簇样本进行回归预测.另一种是基于阴影集的粗糙模糊C均值聚类再回归,通过聚类将簇划分为核心区和边界区,属于核心区的样本对簇的贡献比属于边界区的样本大,将样本限定在同簇同一区域的范围内,再对同簇相似样本进行回归预测.选用两个常用数据集和北京某机场实测数据进行实验.结果表明,基于模糊聚类的先聚类再回归方法比直接回归方法得到的拟合值更精确. 展开更多
关键词 模糊c均值 基于阴影集粗糙模糊 支持向量机 机场噪声时间序列
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部