期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用激光点云的城市无人驾驶路径规划算法
被引量:
11
1
作者
郭晓旻
李必军
+2 位作者
龙江云
徐豪达
卢智
《中国公路学报》
EI
CAS
CSCD
北大核心
2020年第4期182-190,共9页
为了解决随机采样算法受感知环境不确定性影响下的弱鲁棒性以及弱可靠性问题,采用一种基于激光空间势场的渐优随机采样算法框架来设计符合无人驾驶需要的规划算法。针对感知环境的不确定性,首先基于势场原理与激光障碍物点云构建一个融...
为了解决随机采样算法受感知环境不确定性影响下的弱鲁棒性以及弱可靠性问题,采用一种基于激光空间势场的渐优随机采样算法框架来设计符合无人驾驶需要的规划算法。针对感知环境的不确定性,首先基于势场原理与激光障碍物点云构建一个融入了斥力场的规划空间,解决激光障碍物提取中的过分割等问题。其次,利用规划空间来处理随机采样算法中的采样策略、最优母节点选取策略、修剪策略以及最终路径选择策略。再次,在算法中加入了Anytime策略来提高优化解的利用率,使得算法的计算效率满足无人驾驶实时性的要求。同时,为了保证无人驾驶中规划路径的鲁棒性与可靠性,创建了一个综合5重因素的代价函数来选择最优路径,并根据不同的无人驾驶场景来调整相对应的参数;最后在城市测试道路上进行了实地测试。结果表明:设计的算法框架能够适应最高时速40 km·h-1的城区驾驶环境,并能完成跟驰、换道、融入以及静动态障碍物的避障决策。在与SST算法的对比试验中,所提出的算法在各个试验中的轨迹、方向盘转角以及速度的平滑性都优于SST算法,其轨迹与障碍物的距离也优于SST算法。
展开更多
关键词
汽车工程
轨迹规划
空间势场
SST算法
城市
无人驾驶
原文传递
渐优随机采样算法在结构化道路无人驾驶中的应用
被引量:
9
2
作者
单云霄
郭晓旻
+2 位作者
龙江云
蔡斌斌
李必军
《中国公路学报》
EI
CAS
CSCD
北大核心
2018年第4期192-201,共10页
为了解决随机采样算法在结构化道路无人驾驶应用中无法优化收敛的问题,采用渐进优化的采样算法框架设计符合驾驶需求的规划算法。针对渐进优化算法的耗时问题,首先选择不需要Steer(转向函数)的SST算法作为基础框架以规避求解边界值问题...
为了解决随机采样算法在结构化道路无人驾驶应用中无法优化收敛的问题,采用渐进优化的采样算法框架设计符合驾驶需求的规划算法。针对渐进优化算法的耗时问题,首先选择不需要Steer(转向函数)的SST算法作为基础框架以规避求解边界值问题。其次,算法融入"Anytime"策略以提高优化解的利用率。再次,改进的闭环控制策略能减少车辆的实际轨迹与规划路径的误差。在设计的闭环策略中,应用4-D车辆运动模型以保证规划路径符合车辆的实际运动轨迹。为了保证驾驶的安全和舒适,设计了一个综合四重因素的代价函数,且根据不同的驾驶场景调整相应的权重参数。最后,利用真实的无人车在无人驾驶城市测试道路上进行测试,测试场景包括前方静态障碍物躲避、前方动态障碍物跟随以及超车和复合动静态障碍物。测试中,采用车辆的速度和转向数据代表算法的优化收敛特性和运动平稳性。研究结果表明:设计的算法能在时速30km·h-1下完成避障、跟车、超车等机动;无人车在跟驰决策下可保持30km·h-1的最高速度,在避障过程中可实现最高15km·h-1的速度,在跟车决策下可根据前车速度变换自身速度以保持合理的车距和运动平滑性。
展开更多
关键词
交通工程
路径规划
Anytime
CL_SST
渐进优化的随机采样算法
城市
无人驾驶
原文传递
题名
利用激光点云的城市无人驾驶路径规划算法
被引量:
11
1
作者
郭晓旻
李必军
龙江云
徐豪达
卢智
机构
武汉大学测绘遥感信息工程国家重点实验室
武汉大学时空数据智能获取技术与应用教育部工程研究中心
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2020年第4期182-190,共9页
基金
国家自然基金项目(41671441)
国家自然科学基金汽车产业创新发展联合基金重点项目(U1764262)。
文摘
为了解决随机采样算法受感知环境不确定性影响下的弱鲁棒性以及弱可靠性问题,采用一种基于激光空间势场的渐优随机采样算法框架来设计符合无人驾驶需要的规划算法。针对感知环境的不确定性,首先基于势场原理与激光障碍物点云构建一个融入了斥力场的规划空间,解决激光障碍物提取中的过分割等问题。其次,利用规划空间来处理随机采样算法中的采样策略、最优母节点选取策略、修剪策略以及最终路径选择策略。再次,在算法中加入了Anytime策略来提高优化解的利用率,使得算法的计算效率满足无人驾驶实时性的要求。同时,为了保证无人驾驶中规划路径的鲁棒性与可靠性,创建了一个综合5重因素的代价函数来选择最优路径,并根据不同的无人驾驶场景来调整相对应的参数;最后在城市测试道路上进行了实地测试。结果表明:设计的算法框架能够适应最高时速40 km·h-1的城区驾驶环境,并能完成跟驰、换道、融入以及静动态障碍物的避障决策。在与SST算法的对比试验中,所提出的算法在各个试验中的轨迹、方向盘转角以及速度的平滑性都优于SST算法,其轨迹与障碍物的距离也优于SST算法。
关键词
汽车工程
轨迹规划
空间势场
SST算法
城市
无人驾驶
Keywords
automotive engineering
trajectory planning
potential space field
SST algorithm
urban autonomous driving
分类号
U461.1 [机械工程—车辆工程]
原文传递
题名
渐优随机采样算法在结构化道路无人驾驶中的应用
被引量:
9
2
作者
单云霄
郭晓旻
龙江云
蔡斌斌
李必军
机构
武汉大学测绘遥感信息工程国家重点实验室
武汉大学时空数据智能获取技术与应用教育部工程研究中心
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2018年第4期192-201,共10页
基金
国家自然科学基金项目(41671441)
文摘
为了解决随机采样算法在结构化道路无人驾驶应用中无法优化收敛的问题,采用渐进优化的采样算法框架设计符合驾驶需求的规划算法。针对渐进优化算法的耗时问题,首先选择不需要Steer(转向函数)的SST算法作为基础框架以规避求解边界值问题。其次,算法融入"Anytime"策略以提高优化解的利用率。再次,改进的闭环控制策略能减少车辆的实际轨迹与规划路径的误差。在设计的闭环策略中,应用4-D车辆运动模型以保证规划路径符合车辆的实际运动轨迹。为了保证驾驶的安全和舒适,设计了一个综合四重因素的代价函数,且根据不同的驾驶场景调整相应的权重参数。最后,利用真实的无人车在无人驾驶城市测试道路上进行测试,测试场景包括前方静态障碍物躲避、前方动态障碍物跟随以及超车和复合动静态障碍物。测试中,采用车辆的速度和转向数据代表算法的优化收敛特性和运动平稳性。研究结果表明:设计的算法能在时速30km·h-1下完成避障、跟车、超车等机动;无人车在跟驰决策下可保持30km·h-1的最高速度,在避障过程中可实现最高15km·h-1的速度,在跟车决策下可根据前车速度变换自身速度以保持合理的车距和运动平滑性。
关键词
交通工程
路径规划
Anytime
CL_SST
渐进优化的随机采样算法
城市
无人驾驶
Keywords
traffic engineering
path planning
Anytime CL_SST
asymptotically optimal sam-piing-based method
autonomous urban driving
分类号
U491 [交通运输工程—交通运输规划与管理]
原文传递
题名
作者
出处
发文年
被引量
操作
1
利用激光点云的城市无人驾驶路径规划算法
郭晓旻
李必军
龙江云
徐豪达
卢智
《中国公路学报》
EI
CAS
CSCD
北大核心
2020
11
原文传递
2
渐优随机采样算法在结构化道路无人驾驶中的应用
单云霄
郭晓旻
龙江云
蔡斌斌
李必军
《中国公路学报》
EI
CAS
CSCD
北大核心
2018
9
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部