基于自旋转移矩的磁性随机存储器(Spin Transfer Torque-Based Magnetoresistive RAM,STT-MRAM)具有非易失性、可无限擦写和快速写入等优点而有望成为下一代低功耗通用存储器.尤其是近年来STT-MRAM商用芯片的成功问世进一步推动了该器...基于自旋转移矩的磁性随机存储器(Spin Transfer Torque-Based Magnetoresistive RAM,STT-MRAM)具有非易失性、可无限擦写和快速写入等优点而有望成为下一代低功耗通用存储器.尤其是近年来STT-MRAM商用芯片的成功问世进一步推动了该器件的研究与应用.本文首先阐述了MRAM的基本原理与发展历程,着重介绍了写入技术的演变以及磁各向异性的改善.然后总结了近期在3个领域的研究成果:(1)学术界开展了大量研究以探讨制备工艺和器件结构等因素对界面垂直磁各向异性的影响;(2)CoFeB-MgO双界面结构被提出,该结构在不增大写入电流的前提下增强了磁隧道结的热稳定性势垒;(3)新兴的自旋轨道矩写入方式引起了广泛的关注,该技术有望解决传统自旋转移矩所面临的速度瓶颈和势垒击穿风险.最后,本文扼要地介绍了STT-MRAM在芯片设计领域的最新进展.展开更多
采用磁控溅射方法在玻璃基片上制备了以Pd为底层的CoSiB/Pd多层膜样品,利用反常霍尔效应研究了多层膜垂直磁各向异性(perpendicular magnetic anisotropy,PMA)及薄膜的热稳定性。实验中改变了样品周期层中各层的厚度和周期数,结...采用磁控溅射方法在玻璃基片上制备了以Pd为底层的CoSiB/Pd多层膜样品,利用反常霍尔效应研究了多层膜垂直磁各向异性(perpendicular magnetic anisotropy,PMA)及薄膜的热稳定性。实验中改变了样品周期层中各层的厚度和周期数,结果表明这些变化对反常霍尔效应有着重要的影响。本实验通过对这些参数的调节获得了最佳多层膜样品结构Pd(3)/[CoSiB(0.5)/Pd(0.8)]2,周期层中CoSiB和Pd的最佳厚度分别为0.5和0.8BITI,最佳周期数为2。根据最佳样品的磁滞回线,计算得出该样品的有效各向异性常数Keff为9.0×10^4J·m^-3,说明样品具有良好的PMA性能。之后又对Pd(3)/[CoSiB(0.5)/Pd(0.8)]2进行了热稳定性分析,由于适当的退火有利于提高样品的结晶度,结果发现样品在200℃退火1h之后的KⅡ提高到了9.6××10^4J·m^-3,样品的PMA性能得到了进一步的提高。而退火温度超过300℃时,由于高温破坏了多层膜界面,导致其PMA明显变差。该样品的总厚度为5.6nm,完全满足制备垂直磁结构材料的厚度要求。这些特点使其有利于作为自由层应用到磁隧道结构中。展开更多
应用磁控溅射法在玻璃基片上制备了以Pt为底层的CoFeB/Ni多层膜结构样品,通过测试样品的反常霍尔效应研究多层膜的垂直磁各向异性(perpendicular magnetic anisotropy,PMA),对影响多层膜垂直磁各向异性的各因素进行了调制.实验结果表明...应用磁控溅射法在玻璃基片上制备了以Pt为底层的CoFeB/Ni多层膜结构样品,通过测试样品的反常霍尔效应研究多层膜的垂直磁各向异性(perpendicular magnetic anisotropy,PMA),对影响多层膜垂直磁各向异性的各因素进行了调制.实验结果表明,多层膜的底层厚度、周期层中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要影响.通过对样品各参数的逐步调制,最终获得了具有良好PMA的CoFeB/Ni多层膜最佳样品Pt(4)/[CoFeB(0.4)/Ni(0.3)]_3/Pt(1.0).经测试计算,该样品的各向异性常数K_(eff)为2.2×10~6erg/cm^3(1 erg/cm^3=10^(-1)J/m^3),具有良好的PMA性能,样品总厚度为7.1 nm,完全满足制备垂直磁结构材料的厚度要求,可进一步研究其在器件中的集成与应用.展开更多
文摘基于自旋转移矩的磁性随机存储器(Spin Transfer Torque-Based Magnetoresistive RAM,STT-MRAM)具有非易失性、可无限擦写和快速写入等优点而有望成为下一代低功耗通用存储器.尤其是近年来STT-MRAM商用芯片的成功问世进一步推动了该器件的研究与应用.本文首先阐述了MRAM的基本原理与发展历程,着重介绍了写入技术的演变以及磁各向异性的改善.然后总结了近期在3个领域的研究成果:(1)学术界开展了大量研究以探讨制备工艺和器件结构等因素对界面垂直磁各向异性的影响;(2)CoFeB-MgO双界面结构被提出,该结构在不增大写入电流的前提下增强了磁隧道结的热稳定性势垒;(3)新兴的自旋轨道矩写入方式引起了广泛的关注,该技术有望解决传统自旋转移矩所面临的速度瓶颈和势垒击穿风险.最后,本文扼要地介绍了STT-MRAM在芯片设计领域的最新进展.
文摘采用磁控溅射方法在玻璃基片上制备了以Pd为底层的CoSiB/Pd多层膜样品,利用反常霍尔效应研究了多层膜垂直磁各向异性(perpendicular magnetic anisotropy,PMA)及薄膜的热稳定性。实验中改变了样品周期层中各层的厚度和周期数,结果表明这些变化对反常霍尔效应有着重要的影响。本实验通过对这些参数的调节获得了最佳多层膜样品结构Pd(3)/[CoSiB(0.5)/Pd(0.8)]2,周期层中CoSiB和Pd的最佳厚度分别为0.5和0.8BITI,最佳周期数为2。根据最佳样品的磁滞回线,计算得出该样品的有效各向异性常数Keff为9.0×10^4J·m^-3,说明样品具有良好的PMA性能。之后又对Pd(3)/[CoSiB(0.5)/Pd(0.8)]2进行了热稳定性分析,由于适当的退火有利于提高样品的结晶度,结果发现样品在200℃退火1h之后的KⅡ提高到了9.6××10^4J·m^-3,样品的PMA性能得到了进一步的提高。而退火温度超过300℃时,由于高温破坏了多层膜界面,导致其PMA明显变差。该样品的总厚度为5.6nm,完全满足制备垂直磁结构材料的厚度要求。这些特点使其有利于作为自由层应用到磁隧道结构中。
文摘应用磁控溅射法在玻璃基片上制备了以Pt为底层的CoFeB/Ni多层膜结构样品,通过测试样品的反常霍尔效应研究多层膜的垂直磁各向异性(perpendicular magnetic anisotropy,PMA),对影响多层膜垂直磁各向异性的各因素进行了调制.实验结果表明,多层膜的底层厚度、周期层中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要影响.通过对样品各参数的逐步调制,最终获得了具有良好PMA的CoFeB/Ni多层膜最佳样品Pt(4)/[CoFeB(0.4)/Ni(0.3)]_3/Pt(1.0).经测试计算,该样品的各向异性常数K_(eff)为2.2×10~6erg/cm^3(1 erg/cm^3=10^(-1)J/m^3),具有良好的PMA性能,样品总厚度为7.1 nm,完全满足制备垂直磁结构材料的厚度要求,可进一步研究其在器件中的集成与应用.