Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulat...Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulation of mulberry(Morus alba L.)seedlings at four levels of soil lead contamination with or without biochar addition under normal or alternative partial root-zone irrigation(APRI).Methods We conducted a three-factor greenhouse experiment with biochar(with vs.without biochar addition),irrigation method(APRI vs.normal irrigation)and four levels of soil lead(0,50,200 and 800 mg·kg^(-1)).The performance of the seedlings under different treatments was evaluated by measuring growth traits,osmotic substances,antioxidant enzymes and lead accumulation and translocation.Important Findings The results reveal that mulberry had a strong ability to acclimate to soil lead contamination,and that biochar and APRI synergistically increased the biomass and surface area of absorption root across all levels of soil lead.The seedlings were able to resist the severe soil lead contamination(800 mg·kg^(-1) Pb)by adjusting glutathione metabolism,and enhancing the osmotic and oxidative regulating capacity via increasing proline content and the peroxidase activity.Lead ions in the seedlings were primarily concentrated in roots and exhibited a dose–effect associated with the lead concentration in the soil.Pb,biochar and ARPI interactively affected Pb concentrations in leaves and roots,translocation factor and bioconcentration.Our results suggest that planting mulberry trees in combination with biochar addition and APRI can be used to effectively remediate lead-contaminated soils.展开更多
为揭示有利于提高甜糯玉米水分利用效率和固碳能力的水氮管理模式,通过盆栽实验,研究了不同滴灌施氮模式对甜糯玉米干物质量、产量、水分利用效率以及碳含量和碳固定的影响。结果表明:①交替滴灌下,中氮水平(0.15 g N/kg土)处理以干物...为揭示有利于提高甜糯玉米水分利用效率和固碳能力的水氮管理模式,通过盆栽实验,研究了不同滴灌施氮模式对甜糯玉米干物质量、产量、水分利用效率以及碳含量和碳固定的影响。结果表明:①交替滴灌下,中氮水平(0.15 g N/kg土)处理以干物质量为基础的水分利用效率(WUEs)和以产量(籽粒)为基础的水分利用效率(WUE_(t))最高。②与苗期-开花期常规滴灌(CC)相比,苗期-开花期交替滴灌(AA)玉米耗水量降低19.7%~20.8%。中氮水平下,AA模式WUEs和WUE_(t)较CC模式分别提高33.8%和35.8%。③中氮水平时,与CC模式相比,AA模式地上部、籽粒和全株固碳量分别提高16.5%、16.5%和16.3%。④相同滴灌模式下,中氮水平下玉米植株含碳量与固碳量最高。因此,中氮水平下AA模式玉米水分利用效率和固碳能力最高,是甜糯玉米适宜的水氮管理模式。展开更多
基金funded by the Innovative Foundation of Mulberry and Silkworm Research Institute,Chinese Academy of Agricultural Sciences(16JK005).
文摘Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulation of mulberry(Morus alba L.)seedlings at four levels of soil lead contamination with or without biochar addition under normal or alternative partial root-zone irrigation(APRI).Methods We conducted a three-factor greenhouse experiment with biochar(with vs.without biochar addition),irrigation method(APRI vs.normal irrigation)and four levels of soil lead(0,50,200 and 800 mg·kg^(-1)).The performance of the seedlings under different treatments was evaluated by measuring growth traits,osmotic substances,antioxidant enzymes and lead accumulation and translocation.Important Findings The results reveal that mulberry had a strong ability to acclimate to soil lead contamination,and that biochar and APRI synergistically increased the biomass and surface area of absorption root across all levels of soil lead.The seedlings were able to resist the severe soil lead contamination(800 mg·kg^(-1) Pb)by adjusting glutathione metabolism,and enhancing the osmotic and oxidative regulating capacity via increasing proline content and the peroxidase activity.Lead ions in the seedlings were primarily concentrated in roots and exhibited a dose–effect associated with the lead concentration in the soil.Pb,biochar and ARPI interactively affected Pb concentrations in leaves and roots,translocation factor and bioconcentration.Our results suggest that planting mulberry trees in combination with biochar addition and APRI can be used to effectively remediate lead-contaminated soils.
文摘为揭示有利于提高甜糯玉米水分利用效率和固碳能力的水氮管理模式,通过盆栽实验,研究了不同滴灌施氮模式对甜糯玉米干物质量、产量、水分利用效率以及碳含量和碳固定的影响。结果表明:①交替滴灌下,中氮水平(0.15 g N/kg土)处理以干物质量为基础的水分利用效率(WUEs)和以产量(籽粒)为基础的水分利用效率(WUE_(t))最高。②与苗期-开花期常规滴灌(CC)相比,苗期-开花期交替滴灌(AA)玉米耗水量降低19.7%~20.8%。中氮水平下,AA模式WUEs和WUE_(t)较CC模式分别提高33.8%和35.8%。③中氮水平时,与CC模式相比,AA模式地上部、籽粒和全株固碳量分别提高16.5%、16.5%和16.3%。④相同滴灌模式下,中氮水平下玉米植株含碳量与固碳量最高。因此,中氮水平下AA模式玉米水分利用效率和固碳能力最高,是甜糯玉米适宜的水氮管理模式。