Although seismic gap theory plays an important role in the med-and long-term earthquake prediction,the potential risk of the non-seismic gap in historical earthquake rupture areas will need to be simultaneously taken ...Although seismic gap theory plays an important role in the med-and long-term earthquake prediction,the potential risk of the non-seismic gap in historical earthquake rupture areas will need to be simultaneously taken into account in the study of med-and long-term earthquake prediction,due to the temporally clustering or non-linear behavior of large earthquake recurrence.In order to explore technical methods which can be based on observational data,and identify historical earthquake rupture zones( including the seismic gap in historical and prehistoric earthquake rupture zones),we select eight historical large earthquake rupture zones with different elapsed times on the mid-north segment of the North-South Seismic Belt to make quantitative analysis on the characteristics of modern seismicity of these zones and preliminarily explore the seismicity method for determining the urgency degree of potential earthquake hazards.The results mainly show that the pvalue,which reflects the attenuation of earthquake sequence,and the a-value,which reflects the seismicity rate,are strongly related to the elapsed time of the latest earthquake in the rupture zone.However,the corresponding relationships in some rupture areas are not clear perhaps due to the complex fault structure and faulting behavior.The b-value,which represents the state of tectonic stress accumulation,does not easily reflect the elapsed time information of different evolution stages.The b-value temporal scanning shows a steady evolution over time in most of the rupture zones,but in the rupture zone of the Wudu M8.0 earthquake of 1879,the b-value shows significant fluctuations with a decreasing trend for 20 years.By comparative analysis,we conclude that the rupture zones of the 1933 M7.5 Maoxian earthquake and the 1976 M7.2 Songpan-Pingwu earthquake are still in the decaying period of earthquake sequences,and thus do not have the background for recurrence of M7.0 earthquakes.The low b-value Maqu segment,which is located at the north margin of the rupture zone of 展开更多
This paper briefly introduces the current research progress in the field of foreshocks,both in China and abroad,and contrasts the common characteristics and the mechanisms of foreshocks of the sequence under the defin...This paper briefly introduces the current research progress in the field of foreshocks,both in China and abroad,and contrasts the common characteristics and the mechanisms of foreshocks of the sequence under the definition of different conditions of foreshocks. The main recognition methods of foreshocks are briefly reviewed,and their characteristics and existing problems are reviewed and discussed. Foreshocks are small earthquakes that occur before the mainshock and adjacent to the main source location. A foreshock sequence is constituted of a series of foreshock activities that occur before the mainshock. The proportion of earthquake cases includes direct foreshocks ranging from 10% - 40% at different defined conditions of foreshocks. Theoretically,cascade model or pre-slid model can explain foreshocks. Foreshocks are mainly concentrated in the range of 10km -75 km of the mainshock,but their time distribution form is very complicated,mostly prior to the mainshock from 1 or 2 days,the seismicity rate of part of foreshock sequences shows significant acceleration features,but many foreshock sequences often show the attenuation characteristics of mainshock-aftershock sequences. The most prominent feature of foreshocks is a focal consistent mechanism and low b-value of earthquakes of the earthquake sequence. Foreshocks seems to have a certain relationship with tectonic environment and the rupture form of the mainshock,in limited foreshocks earthquake cases,the dip-thrusting earthquakes seem to have relatively more foreshocks. The results of some of the earthquake cases show that the focal depth of foreshocks gradually moved downward with the mainshock approaching. So far,it is difficult to determine whether an earthquake or an earthquake sequence is a foreshock or foreshock sequence before the mainshock. The identification methods of foreshocks mainly include a statistical method of analogy,focal consistent mechanism and related derivative method,the fine detection of the earthquake nucleation process. From a few exi展开更多
基金funded jointly by National Science&Technology Pillar Program,China(Grant No.2012BAK19B01)the Task-oriented Contract for Seismic Regime Monitoring(2010020304)
文摘Although seismic gap theory plays an important role in the med-and long-term earthquake prediction,the potential risk of the non-seismic gap in historical earthquake rupture areas will need to be simultaneously taken into account in the study of med-and long-term earthquake prediction,due to the temporally clustering or non-linear behavior of large earthquake recurrence.In order to explore technical methods which can be based on observational data,and identify historical earthquake rupture zones( including the seismic gap in historical and prehistoric earthquake rupture zones),we select eight historical large earthquake rupture zones with different elapsed times on the mid-north segment of the North-South Seismic Belt to make quantitative analysis on the characteristics of modern seismicity of these zones and preliminarily explore the seismicity method for determining the urgency degree of potential earthquake hazards.The results mainly show that the pvalue,which reflects the attenuation of earthquake sequence,and the a-value,which reflects the seismicity rate,are strongly related to the elapsed time of the latest earthquake in the rupture zone.However,the corresponding relationships in some rupture areas are not clear perhaps due to the complex fault structure and faulting behavior.The b-value,which represents the state of tectonic stress accumulation,does not easily reflect the elapsed time information of different evolution stages.The b-value temporal scanning shows a steady evolution over time in most of the rupture zones,but in the rupture zone of the Wudu M8.0 earthquake of 1879,the b-value shows significant fluctuations with a decreasing trend for 20 years.By comparative analysis,we conclude that the rupture zones of the 1933 M7.5 Maoxian earthquake and the 1976 M7.2 Songpan-Pingwu earthquake are still in the decaying period of earthquake sequences,and thus do not have the background for recurrence of M7.0 earthquakes.The low b-value Maqu segment,which is located at the north margin of the rupture zone of
基金supported by the Special Task for Science and Technology Project of the Department of Earthquake Monitoring and Prediction,CEA in 2016(1640501320212)
文摘This paper briefly introduces the current research progress in the field of foreshocks,both in China and abroad,and contrasts the common characteristics and the mechanisms of foreshocks of the sequence under the definition of different conditions of foreshocks. The main recognition methods of foreshocks are briefly reviewed,and their characteristics and existing problems are reviewed and discussed. Foreshocks are small earthquakes that occur before the mainshock and adjacent to the main source location. A foreshock sequence is constituted of a series of foreshock activities that occur before the mainshock. The proportion of earthquake cases includes direct foreshocks ranging from 10% - 40% at different defined conditions of foreshocks. Theoretically,cascade model or pre-slid model can explain foreshocks. Foreshocks are mainly concentrated in the range of 10km -75 km of the mainshock,but their time distribution form is very complicated,mostly prior to the mainshock from 1 or 2 days,the seismicity rate of part of foreshock sequences shows significant acceleration features,but many foreshock sequences often show the attenuation characteristics of mainshock-aftershock sequences. The most prominent feature of foreshocks is a focal consistent mechanism and low b-value of earthquakes of the earthquake sequence. Foreshocks seems to have a certain relationship with tectonic environment and the rupture form of the mainshock,in limited foreshocks earthquake cases,the dip-thrusting earthquakes seem to have relatively more foreshocks. The results of some of the earthquake cases show that the focal depth of foreshocks gradually moved downward with the mainshock approaching. So far,it is difficult to determine whether an earthquake or an earthquake sequence is a foreshock or foreshock sequence before the mainshock. The identification methods of foreshocks mainly include a statistical method of analogy,focal consistent mechanism and related derivative method,the fine detection of the earthquake nucleation process. From a few exi