期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Item2Vec负采样优化的专题地图产品个性化推荐方法研究 被引量:6
1
作者 毛文山 赵红莉 +3 位作者 孙凤娇 蒋云钟 姜倩 朱彦儒 《地球信息科学学报》 CSCD 北大核心 2020年第11期2128-2139,共12页
建立适用于专题地图产品检索的用户偏好推荐模型是提高专题地图质量的有效方式之一,在专题地图产品推荐场景中,存在严重的内容冷启动和评论数据稀疏问题,现有的推荐算法无法为特定类用户推荐不同特征的专题地图产品,导致用户从专题地图... 建立适用于专题地图产品检索的用户偏好推荐模型是提高专题地图质量的有效方式之一,在专题地图产品推荐场景中,存在严重的内容冷启动和评论数据稀疏问题,现有的推荐算法无法为特定类用户推荐不同特征的专题地图产品,导致用户从专题地图中获取偏好信息受到限制。因此,本文构建基于负采样的连续词袋模型和基于Word2Vec的Item2Vec相结合的用户偏好推荐方法,用于专题地图产品推荐。①计算用户行为日志文件中交互行为数据的隐性评分,以代替专题地图推荐信息流场景中稀疏的用户评论数据;②基于负采样的连续词袋模型提取目标专题地图的前后地图序列感知特征信息,通过控制正负样本比例为1:2,提升目标专题地图潜在评分的预测精度;③通过Item2Vec将带有用户行为特征信息的专题地图映射到向量空间,计算用户对专题地图的相似度矩阵,根据用户偏好程度完成推荐。在构建的专题地图评分实验数据集Thematic CMaps和4个公开验证数据集MovieLens上的测试结果表明:与LFM、Personal Rank、Content Based和SVD 4种传统推荐算法相比,本文所提方法可有效提高潜在评分的预测精度,推荐性能最高达到27.85%;与以霍夫曼采样方式的Item2Vec基础方法和YouTubeNet 2种神经网络推荐算法相比,评分预测精度有一定提高,且推荐性能不断提升,最高达到2.97%和5.78%。以经典算法奇异值分解(SVD)为例,将MovieLens-20M数据集切分后,在数据量不断增大的数据子集中,本文所用方法的评分预测精度和性能均优于SVD方法。 展开更多
关键词 地图个性化推荐 专题地图产品检索 深度学习 负采样 Item2Vec CBOW模型 用户事件行为 隐性评分
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部