为了减少土壤背景带来的干扰,更加准确、高效的获取无人机热红外图像中的玉米冠层温度,进而快速反演玉米地土壤含水率,以4种水分梯度处理的拔节期玉米为研究对象,借助无人机可见光和热红外图像,采用RGRI指数法、Otsu阈值法和不剔除土壤...为了减少土壤背景带来的干扰,更加准确、高效的获取无人机热红外图像中的玉米冠层温度,进而快速反演玉米地土壤含水率,以4种水分梯度处理的拔节期玉米为研究对象,借助无人机可见光和热红外图像,采用RGRI指数法、Otsu阈值法和不剔除土壤背景3种处理方法提取热红外图像中玉米冠层温度信息,计算作物水分胁迫指数(Crop water stress index,CWSI)并用于反演不同水分梯度处理下玉米地不同深度的土壤含水率,基于3种方法获得的CWSI分别记为CWSIRGRI、CWSIOtsu、CWSIsc。结果表明:(1)基于RGRI指数法获取的玉米冠层温度与实测冠层温度的相关性最高(R2均大于0.8;RMSE均小于1℃),Otsu方法次之,不剔除土壤背景方法效果最差。(2)在整个拔节期,CWSIRGRI反演土壤含水率效果最好(R2均大于0.5,P<0.01;效果显著),CWSIOtsu次之、CWSIsc反演效果最差。(3)选取CWSIRGRI为最优CWSI指标,其在玉米拔节期5个土壤深度内的R2呈现先上升后下降的趋势且都在0~30 cm深度内达到最大值。因此,基于RGRI指数法建立的CWSIRGRI可以作为反演玉米地土壤含水率的有效指标。展开更多
文摘为了减少土壤背景带来的干扰,更加准确、高效的获取无人机热红外图像中的玉米冠层温度,进而快速反演玉米地土壤含水率,以4种水分梯度处理的拔节期玉米为研究对象,借助无人机可见光和热红外图像,采用RGRI指数法、Otsu阈值法和不剔除土壤背景3种处理方法提取热红外图像中玉米冠层温度信息,计算作物水分胁迫指数(Crop water stress index,CWSI)并用于反演不同水分梯度处理下玉米地不同深度的土壤含水率,基于3种方法获得的CWSI分别记为CWSIRGRI、CWSIOtsu、CWSIsc。结果表明:(1)基于RGRI指数法获取的玉米冠层温度与实测冠层温度的相关性最高(R2均大于0.8;RMSE均小于1℃),Otsu方法次之,不剔除土壤背景方法效果最差。(2)在整个拔节期,CWSIRGRI反演土壤含水率效果最好(R2均大于0.5,P<0.01;效果显著),CWSIOtsu次之、CWSIsc反演效果最差。(3)选取CWSIRGRI为最优CWSI指标,其在玉米拔节期5个土壤深度内的R2呈现先上升后下降的趋势且都在0~30 cm深度内达到最大值。因此,基于RGRI指数法建立的CWSIRGRI可以作为反演玉米地土壤含水率的有效指标。