期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于图编码网络的社交网络节点分类方法 被引量:9
1
作者 郝志峰 柯妍蓉 +3 位作者 李烁 蔡瑞初 温雯 王丽娟 《计算机应用》 CSCD 北大核心 2020年第1期188-195,共8页
针对如何融合节点自身属性以及网络结构信息实现社交网络节点分类的问题,提出了一种基于图编码网络的社交网络节点分类算法。首先,每个节点向邻域节点传播其携带的信息;其次,每个节点通过神经网络挖掘其与邻域节点之间可能隐含的关系,... 针对如何融合节点自身属性以及网络结构信息实现社交网络节点分类的问题,提出了一种基于图编码网络的社交网络节点分类算法。首先,每个节点向邻域节点传播其携带的信息;其次,每个节点通过神经网络挖掘其与邻域节点之间可能隐含的关系,并且将这些关系进行融合;最后,每个节点根据自身信息以及与邻域节点关系的信息提取更高层次的特征,作为节点的表示,并且根据该表示对节点进行分类。在微博数据集上,与经典的深度随机游走模型、逻辑回归算法有以及最近提出的图卷积网络算法相比,所提算法分类准确率均有大于8%的提升;在DBLP数据集上,与多层感知器相比分类准确率提升4.83%,与图卷积网络相比分类准确率提升0.91%。 展开更多
关键词 社交网络 节点分类 编码网络 神经网络 表示
下载PDF
基于图神经网络的知识图谱补全研究综述
2
作者 吴越 孙海春 《数据分析与知识发现》 EI CSCD 北大核心 2024年第3期10-28,共19页
【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳... 【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳总结图卷积神经网络、图注意力网络、图自动编码网络三种基于图神经网络的知识图谱补全方法类别,并对每种类别的技术脉络、典型方法、模型框架优缺点等进行对比论述。【结果】运用知识图谱补全任务的常用数据集和评价指标,从MRR、MR、Hit@k等性能评价角度对各类模型的效果进行对比分析,并对未来研究提出展望。【局限】在实验结果对比中,只讨论了FB15K-237和WN18RR数据集上部分应用较广的模型的评估结果,缺乏全部模型在同一数据集上的对比。【结论】相比基于表示学习模型和基于神经网络模型,基于图神经网络模型具有更好的图谱补全性能,但模型关系复杂性高、过平滑、可扩展性通用性差,这也是未来研究要解决的问题。 展开更多
关键词 知识谱补全 神经网络 卷积神经网络 注意力网络 自动编码网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部