【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳...【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳总结图卷积神经网络、图注意力网络、图自动编码网络三种基于图神经网络的知识图谱补全方法类别,并对每种类别的技术脉络、典型方法、模型框架优缺点等进行对比论述。【结果】运用知识图谱补全任务的常用数据集和评价指标,从MRR、MR、Hit@k等性能评价角度对各类模型的效果进行对比分析,并对未来研究提出展望。【局限】在实验结果对比中,只讨论了FB15K-237和WN18RR数据集上部分应用较广的模型的评估结果,缺乏全部模型在同一数据集上的对比。【结论】相比基于表示学习模型和基于神经网络模型,基于图神经网络模型具有更好的图谱补全性能,但模型关系复杂性高、过平滑、可扩展性通用性差,这也是未来研究要解决的问题。展开更多
文摘【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳总结图卷积神经网络、图注意力网络、图自动编码网络三种基于图神经网络的知识图谱补全方法类别,并对每种类别的技术脉络、典型方法、模型框架优缺点等进行对比论述。【结果】运用知识图谱补全任务的常用数据集和评价指标,从MRR、MR、Hit@k等性能评价角度对各类模型的效果进行对比分析,并对未来研究提出展望。【局限】在实验结果对比中,只讨论了FB15K-237和WN18RR数据集上部分应用较广的模型的评估结果,缺乏全部模型在同一数据集上的对比。【结论】相比基于表示学习模型和基于神经网络模型,基于图神经网络模型具有更好的图谱补全性能,但模型关系复杂性高、过平滑、可扩展性通用性差,这也是未来研究要解决的问题。