期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
基于图注意力深度网络的电力系统暂态稳定评估 被引量:37
1
作者 钟智 管霖 +3 位作者 苏寅生 姚海成 黄济宇 郭梦轩 《电网技术》 EI CSCD 北大核心 2021年第6期2122-2130,共9页
常规深度学习模型应用于电力系统暂态稳定评估时难以直观和充分地考虑电网拓扑结构对稳定性的影响。论文结合“图深度学习”思想,将图注意力网络(graph attention network,GAT)引入TSA建模,设计了多头注意力方案,采用加权交叉熵损失函... 常规深度学习模型应用于电力系统暂态稳定评估时难以直观和充分地考虑电网拓扑结构对稳定性的影响。论文结合“图深度学习”思想,将图注意力网络(graph attention network,GAT)引入TSA建模,设计了多头注意力方案,采用加权交叉熵损失函数改善不均衡样本的训练效果,提出多图并行训练方案加速训练过程。结合算例分析了输入选择和采样点数对稳定评估效果的影响,应用可视化技术分析了图注意力网络的特征聚合效果。通过与多种深度学习模型下建立的TSA模型的性能对比,充分验证所提出模型的优越性。 展开更多
关键词 系统 暂态稳定评估 深度学习 注意力网络
下载PDF
基于图注意力网络的配电网故障定位方法 被引量:35
2
作者 李佳玮 王小君 +2 位作者 和敬涵 张永杰 张大海 《电网技术》 EI CSCD 北大核心 2021年第6期2113-2121,共9页
基于人工智能的电网故障诊断技术已经有了大量的研究成果,但配电网拓扑变化频繁,而传统人工智能方法高度依赖训练数据,给配电网的故障定位问题带来了困难。提出了一种基于图注意力网络(graph attention network,GAT)的配电网故障定位方... 基于人工智能的电网故障诊断技术已经有了大量的研究成果,但配电网拓扑变化频繁,而传统人工智能方法高度依赖训练数据,给配电网的故障定位问题带来了困难。提出了一种基于图注意力网络(graph attention network,GAT)的配电网故障定位方法。将配电网的电气节点和线路映射为图注意力网络中图的顶点和边,根据相邻顶点之间故障特征的相似度计算注意力系数,把顶点特征之间的相关性更好地融入到故障定位模型中,提高了故障定位模型对拓扑变化的适应能力。最后,搭建了配电网故障仿真模型验证了所提方法具有定位精度高、鲁棒性好且不受故障电阻、故障初相角和故障距离影响的优点,并在不同网络拓扑变化程度和情景下验证了模型在实际综合故障情景中有良好的应用效果。 展开更多
关键词 配电网 故障定位 拓扑变化 注意力网络
下载PDF
基于图注意力网络的因果关系抽取 被引量:21
3
作者 许晶航 左万利 +1 位作者 梁世宁 王英 《计算机研究与发展》 EI CSCD 北大核心 2020年第1期159-174,共16页
因果关系作为一种重要的关系类型在关系推理等许多领域中起着至关重要的作用,因此对因果关系进行抽取是文本挖掘中的一项基本任务.与传统文本分类方法或关系抽取不同,采用序列标注的方法可以抽取文本中的因果实体并确定因果关系方向,不... 因果关系作为一种重要的关系类型在关系推理等许多领域中起着至关重要的作用,因此对因果关系进行抽取是文本挖掘中的一项基本任务.与传统文本分类方法或关系抽取不同,采用序列标注的方法可以抽取文本中的因果实体并确定因果关系方向,不需要依赖特征工程或因果背景知识.主要贡献有:1)拓展句法依存树到句法依存图,将图注意力网络应用到自然语言处理中,引入了基于句法依存图的图注意力网络的概念;2)提出Bi-LSTM+CRF+S-GAT因果关系抽取模型,根据输入的词向量生成句子中每个词的因果标签;3)对SemEval数据集进行修正与拓展,针对其存在的缺陷制定规则重新标注实验数据.在拓展后的SemEval数据集上进行了大量的实验,结果表明:该模型在预测准确率上比现有最优模型Bi-LSTM+CRF+self-ATT提高了0.064. 展开更多
关键词 因果关系抽取 注意力网络 序列标注 句法依存 双向长短期记忆网络
下载PDF
基于图卷积神经网络的文本分类方法研究综述 被引量:16
4
作者 檀莹莹 王俊丽 张超波 《计算机科学》 CSCD 北大核心 2022年第8期205-216,共12页
文本分类是自然语言处理领域中常见的任务,机器学习和深度学习在该任务中已有较多研究并取得了很大进展,然而,这些传统方法只能处理欧氏空间的数据,不能完全有效地表达出文本的语义信息。为了打破传统的学习模式,诸多研究开始尝试用图... 文本分类是自然语言处理领域中常见的任务,机器学习和深度学习在该任务中已有较多研究并取得了很大进展,然而,这些传统方法只能处理欧氏空间的数据,不能完全有效地表达出文本的语义信息。为了打破传统的学习模式,诸多研究开始尝试用图表示文本中各实体间的丰富关系,并利用图卷积神经网络学习文本表示。文中对基于图卷积神经网络的文本分类方法进行了综述,首先概述了图卷积神经网络的背景与原理;其次,利用不同类型的图网络详细阐述了基于图卷积神经网络的文本分类方法,同时分析了图卷积神经网络在网络深度上的局限性,并介绍了深层网络在文本分类任务上的最新进展;最后,通过实验比较了各模型的分类性能,并探讨了该领域的难点与未来的发展方向。 展开更多
关键词 文本分类 卷积神经网络 注意力网络 过平滑 非欧空间
下载PDF
基于图注意力网络的药物ADMET分类预测模型构建方法 被引量:15
5
作者 顾耀文 张博文 +2 位作者 郑思 杨丰春 李姣 《数据分析与知识发现》 CSSCI CSCD 北大核心 2021年第8期76-85,共10页
【目的】对药物的吸收、分布、代谢、排泄、毒性(Absorption,Distribution,Metabolism,Excretion,Toxicity,ADMET)中的代谢、毒性属性进行建模,用于虚拟筛选中的药物性质评价。【方法】提出一种图注意力网络构建药物ADMET预测模型,基于... 【目的】对药物的吸收、分布、代谢、排泄、毒性(Absorption,Distribution,Metabolism,Excretion,Toxicity,ADMET)中的代谢、毒性属性进行建模,用于虚拟筛选中的药物性质评价。【方法】提出一种图注意力网络构建药物ADMET预测模型,基于开放数据库和科学文献的药物ADMET数据构造分子图作为分子结构特征,进一步将提出的模型与三种机器学习模型和两种传统的图神经网络模型进行性能比较。【结果】收集整合得到9个ADMET数据集共计149 457条数据。基于图注意力网络的ADMET预测模型在9个数据集中的平均准确率为0.825、平均F1分数为0.672。与机器学习和图神经网络基线模型相比,所提方法在平均准确率和平均F1分数指标上最大提升幅度达6.4%和26.0%。【局限】数据清洗步骤可以精细化处理,模型预测性能可以通过改进预训练策略进一步提升。【结论】所提图注意力网络模型在药物ADMET分类预测上取得良好性能,可将其应用于虚拟药物筛选流程,为计算机辅助药物设计和药物发现提供参考。 展开更多
关键词 神经网络 注意力网络 多源异构数据 ADMET 虚拟筛选
原文传递
基于时间卷积网络与图注意力网络的分行业日售电量预测方法 被引量:11
6
作者 顾默 赵兵 陈昊 《电网技术》 EI CSCD 北大核心 2022年第4期1287-1296,共10页
为控制电力成本及提高电力部门绩效考核能力,需要高效准确地进行日售电量预测。深度学习卷积神经网络常被用于电力数据预测,但由于其输入数据信息量有限,现有模型预测存在上限,致使其存在难以捕捉长时特征等问题。为高效准确地预测日售... 为控制电力成本及提高电力部门绩效考核能力,需要高效准确地进行日售电量预测。深度学习卷积神经网络常被用于电力数据预测,但由于其输入数据信息量有限,现有模型预测存在上限,致使其存在难以捕捉长时特征等问题。为高效准确地预测日售电量,提出了一种基于时间卷积网络与图注意力网络相结合的分行业日售电量预测方法,搭建了高维度分行业日售电量预测模型。该方法可同时输入多个行业的日售电量,提取反映单个行业时序特征的高维变量,将多个行业的高维变量进行拼接学习,得到各行业之间的影响因素。通过多个行业日售电量的集成增加输入数据的信息量,从而实现各行业的日售电量预测。以中国东南某城市的21个行业日售电量为实际算例,上述方法的平均误差为4.03%。与时间卷积网络、门控循环单元网络、Facebook的Prophet模型、M4冠军模型指数平滑递归神经网络等进行对比,实验表明,所提出的分行业日售电量预测模型具有更高的预测精度。 展开更多
关键词 日售电量预测 时间卷积网络 注意力网络 高维变量 时序特征
下载PDF
面向方面级情感分析的交互图注意力网络模型 被引量:11
7
作者 韩虎 吴渊航 秦晓雅 《电子与信息学报》 EI CSCD 北大核心 2021年第11期3282-3290,共9页
方面级情感分析目前主要采用注意力机制与传统神经网络相结合的方法对方面与上下文词进行建模。这类方法忽略了句子中方面与上下文词之间的句法依存信息及位置信息,从而导致注意力权重分配不合理。为此,该文提出一种面向方面级情感分析... 方面级情感分析目前主要采用注意力机制与传统神经网络相结合的方法对方面与上下文词进行建模。这类方法忽略了句子中方面与上下文词之间的句法依存信息及位置信息,从而导致注意力权重分配不合理。为此,该文提出一种面向方面级情感分析的交互图注意力网络模型(IGATs)。该模型首先使用双向长短期记忆网络(BiLSTM)学习句子的语义特征表示,并结合位置信息生成新的句子特征表示,然后在新生成的特征表示上构建图注意力网络以捕获句法依存信息,再通过交互注意力机制建模方面与上下文词之间的语义关系,最后利用softmax进行分类输出。在3个公开数据集上的实验结果表明,与其他现有模型相比,IGATs的准确率与宏平均F1值均得到显著提升。 展开更多
关键词 自然语言处理 方面级情感分析 位置嵌入 注意力网络 注意力机制
下载PDF
融合知识图谱的双线性图注意力网络推荐算法 被引量:11
8
作者 潘承瑞 何灵敏 +2 位作者 胥智杰 王修晖 宋承文 《计算机工程与应用》 CSCD 北大核心 2021年第1期29-37,共9页
知识图谱可有效缓解传统协同过滤中的数据稀疏和冷启动问题,因此,近年来在推荐系统中融入知识图谱的方法成为重要的探索方向。然而现有的方法大多将知识图谱的网络结构划分为单独路径或仅利用了一阶邻居信息,造成无法建立整个图上的高... 知识图谱可有效缓解传统协同过滤中的数据稀疏和冷启动问题,因此,近年来在推荐系统中融入知识图谱的方法成为重要的探索方向。然而现有的方法大多将知识图谱的网络结构划分为单独路径或仅利用了一阶邻居信息,造成无法建立整个图上的高阶连通性问题。为解决该问题,提出融合知识图谱和图注意力网络的KG-BGAT模型,并设计了双线性采集器。双线性采集器能够在信息采集阶段获取节点间的特征交互信息,丰富节点表示;图注意力网络通过递归嵌入传播算法将各个节点表示沿图进行传播,能够捕获图中的高阶连通性。在MovieLens-1M数据集上进行了Top-K推荐实验,在推荐列表长度为20时,精确率、召回率和归一化折损累计增益分别为29.4%、24.9%、67.4%,超过了目前主流的CKE、RippleNet、KGCN等融合知识图谱的推荐算法。实验证明提出的方法能够有效提高推荐结果的准确性。 展开更多
关键词 推荐系统 知识 特征交互 注意力网络
下载PDF
基于图注意力机制和Transformer的异常检测 被引量:8
9
作者 严莉 张凯 +3 位作者 徐浩 韩圣亚 刘珅岐 史玉良 《电子学报》 EI CAS CSCD 北大核心 2022年第4期900-908,共9页
异常检测对电力行业的发展有着重要的影响,如何根据大规模电力数据进行异常检测是重要的研究热点.目前,大多数研究通过聚类或神经网络进行异常检测.但是这些方法忽略了时序数据之间潜在的关联关系及某些特点的重要信息,没有充分挖掘出... 异常检测对电力行业的发展有着重要的影响,如何根据大规模电力数据进行异常检测是重要的研究热点.目前,大多数研究通过聚类或神经网络进行异常检测.但是这些方法忽略了时序数据之间潜在的关联关系及某些特点的重要信息,没有充分挖掘出数据的潜在价值.因此,提出了一种基于图注意力和Transformer的异常检测模型.该模型首先根据数据中台中获取的电力数据(主要包括用户ID、电能表ID、用户类型、电流、电压、功率等数据)构建一个异构信息网络;然后,为了减少模型参数和避免出现过拟合的现象,在图卷积网络(Graph Convolutional Network,GCN)模型的基础上,引入非负矩阵分解(Non-Negative Matrix Factorization,NNMF)的方法来进行相似性学习;最后采用图注意力网络(Graph Attention Network,GAT)和Transformer共同捕获数据间的相互关联关系,从而提高检测精度.以中国某地区的电力数据为基础进行验证,实验结果表明所提出的方法可以有效进行异常检测. 展开更多
关键词 异常检测 异构信息网络 相似性学习 注意力网络 TRANSFORMER
下载PDF
一种基于图注意力网络的异质信息网络表示学习框架 被引量:9
10
作者 康世泽 吉立新 张建朋 《电子与信息学报》 EI CSCD 北大核心 2021年第4期915-922,共8页
常用的异质信息网络有知识图谱和具有简单模式层的异质信息网络,它们的表示学习通常遵循不同的方法。该文总结了知识图谱和具有简单模式层的异质信息网络之间的异同,提出了一个通用的异质信息网络表示学习框架。该文提出的框架可以分为... 常用的异质信息网络有知识图谱和具有简单模式层的异质信息网络,它们的表示学习通常遵循不同的方法。该文总结了知识图谱和具有简单模式层的异质信息网络之间的异同,提出了一个通用的异质信息网络表示学习框架。该文提出的框架可以分为3个部分:基础向量模型,基于图注意力网络的传播模型以及任务模型。基础向量模型用于学习基础的网络向量;传播模型通过堆叠注意力层学习网络的高阶邻居特征;可更换的任务模型适用于不同的应用场景。与基准模型相比,该文所提框架在知识图谱的链接预测任务和异质信息网络的节点分类任务中都取得了相对不错的效果。 展开更多
关键词 异质信息网络 知识 注意力网络 表示学习
下载PDF
基于图注意力网络的舆情演变预测研究 被引量:8
11
作者 彭思琪 周安民 +3 位作者 廖珊 周雨婷 刘德辉 文雅 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第1期103-110,共8页
要想实现对纷繁复杂的网络舆情的监控和管理,预防舆情危机的突发状况,一个关键的解决方案就是对网络舆情事件的发展趋势进行预测.然而,目前针对舆情演变预测的研究工作却十分有限,尤其是社交网络环境中的舆情演变预测.本文将评论文本的... 要想实现对纷繁复杂的网络舆情的监控和管理,预防舆情危机的突发状况,一个关键的解决方案就是对网络舆情事件的发展趋势进行预测.然而,目前针对舆情演变预测的研究工作却十分有限,尤其是社交网络环境中的舆情演变预测.本文将评论文本的情感值作为演变预测的对象,利用情感词和舆情事件中评论文本的语义相似度,为事件发展的每个时间段都构造一个对应的图结构,再结合门控循环单元(GRU)与图注意力网络(GAT)对情感时间序列进行预测.为了验证模型的有效性,本文以Twitter中弗洛伊德事件的评论文本作为数据集,开展与基于图卷积网络的预测模型的对比实验.实验结果表明,本文提出模型的R^(2)决定系数为0.569,平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)均小于基于图卷积网络的预测模型,能较好地实现舆情事件中评论文本的情感演变预测. 展开更多
关键词 情感演变预测 网络舆情 注意力网络 时间序列
下载PDF
图神经网络研究综述 被引量:1
12
作者 侯磊 刘金环 +1 位作者 于旭 杜军威 《计算机科学》 CSCD 北大核心 2024年第6期282-298,共17页
随着人工智能的快速发展,深度学习已经在图像、文本和语音等可在欧氏空间表示的数据中取得了巨大成功,但却一直无法很好地应用于非欧氏空间。近年来,图神经网络在非欧几里得空间中展现出了强大的表示学习能力,并广泛应用于推荐系统、自... 随着人工智能的快速发展,深度学习已经在图像、文本和语音等可在欧氏空间表示的数据中取得了巨大成功,但却一直无法很好地应用于非欧氏空间。近年来,图神经网络在非欧几里得空间中展现出了强大的表示学习能力,并广泛应用于推荐系统、自然语言处理以及机器视觉等众多领域。图神经网络模型基于信息的传播机制,具体地,图中的目标节点通过聚合邻居节点的信息来更新自身的嵌入表示。利用图神经网络,可将众多现实问题(如社交网络、知识图谱和药物化学成分等)抽象成图网络,借助图中的连接边,对不同节点之间的依赖关系进行合理建模。鉴于此,对图神经网络进行了系统综述,首先介绍了图结构数据方面的基础知识,然后对图游走算法和不同类型的图神经网络模型进行了系统梳理。进一步地,详细阐述了当前图神经网络的通用框架和应用领域,最后对图神经网络的未来进行了总结与展望。 展开更多
关键词 结构数据 游走算法 卷积神经网络 注意力网络 残差网络 递归网络
下载PDF
基于安全知识图谱与逆向特征的弱点信息补全 被引量:2
13
作者 周莎 申国伟 郭春 《计算机工程》 CSCD 北大核心 2024年第1期145-155,共11页
开源网络安全知识库已经成为弱点安全加固措施的有效来源,但是受异构信息协同难、历史信息维护难等因素影响,导致开源网络安全知识库弱点信息缺失。针对现有弱点信息补全方法对弱点信息不同邻域特征学习不充分的问题,提出一种基于安全... 开源网络安全知识库已经成为弱点安全加固措施的有效来源,但是受异构信息协同难、历史信息维护难等因素影响,导致开源网络安全知识库弱点信息缺失。针对现有弱点信息补全方法对弱点信息不同邻域特征学习不充分的问题,提出一种基于安全知识图谱和逆向特征的弱点信息补全方法 VulKGC-RN。为捕获不同邻域信息,构建关联CVE、CWE、CAPEC和ATT&CK 4类开源网络安全知识库的弱点安全知识图谱,并分析弱点安全知识图谱中安全实体的网络结构,采用逆向知识图谱捕获逆向邻域信息。为学习不同邻域特征,采用图注意力机制,并融合图注意力网络所学习安全实体的正向邻域和逆向邻域的角色特征,以实现弱点安全知识图谱的信息补全。在由5种7 199个安全实体和15种11 817条关联关系组成的开源网络安全数据集上进行实验,结果表明,VulKGC-RN的平均排名达到179,平均倒数排名达到0.671 4,优于基线方法。 展开更多
关键词 网络安全知识库 漏洞弱点 安全知识 知识谱补全 注意力网络
下载PDF
基于图注意力网络的多标签图像分类模型 被引量:7
14
作者 张辉宜 张进 黄俊 《重庆工商大学学报(自然科学版)》 2022年第1期34-41,共8页
针对ML-GCN中标签共现嵌入维度过高影响模型分类性能和ML-GCN中没有充分发掘标签之间不对称关系的问题,提出一种基于图注意力网络的多标签图像分类模型ML-GAT;ML-GAT模型首先对高维标签语义嵌入矩阵进行降维;然后通过降维后的低维标签... 针对ML-GCN中标签共现嵌入维度过高影响模型分类性能和ML-GCN中没有充分发掘标签之间不对称关系的问题,提出一种基于图注意力网络的多标签图像分类模型ML-GAT;ML-GAT模型首先对高维标签语义嵌入矩阵进行降维;然后通过降维后的低维标签语义嵌入表示和标签类别共现图得到标签共现嵌入;与此同时ML-GAT将多标签原始图像输入卷积神经网络进行图像通用特征提取,将卷积神经网络提取出的多标签图像通用特征按照图注意力网络计算得到的标签共现嵌入的维度进行维度统一;最后ML-GAT融合标签共现嵌入和图像通用特征得到每一张多标签图像的标签预测评分;在VOC 2007与MS-COCO 2014上的实验结果表明:在训练样本充分且标签类别数足够多的情况下,ML-GAT取得了较好的实验结果,通过和其他模型比较分析,ML-GAT模型所采取的策略可以一定程度上提升模型的多标签图像分类性能。 展开更多
关键词 多标签分类 注意力网络 卷积神经网络 深度学习
下载PDF
基于多特征融合和深度学习的微观扩散预测 被引量:1
15
作者 张雪芹 刘岗 +2 位作者 王智能 罗飞 吴建华 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期688-699,共12页
准确地预测社交网络中的信息扩散节点可以对谣言、计算机病毒等不良信息的传播以及信息泄露做到早检测、早溯源和早抑制。为了提高微观扩散预测精度,该文提出了一个基于多特征融合和深度学习的微观信息扩散预测通用框架(MFFDLP)。为了... 准确地预测社交网络中的信息扩散节点可以对谣言、计算机病毒等不良信息的传播以及信息泄露做到早检测、早溯源和早抑制。为了提高微观扩散预测精度,该文提出了一个基于多特征融合和深度学习的微观信息扩散预测通用框架(MFFDLP)。为了获取信息扩散的时序特征,基于信息扩散序列和社交网络图,采用门控循环神经网络提取局部时序特征和全局时序特征,并融合形成信息扩散序列表征;为了获取用户交互行为和兴趣爱好的动态表示,根据历史信息构建信息扩散图,使用级联图注意力网络提取信息扩散子图中节点特征和边特征,并通过嵌入查找,融合形成当前信息扩散序列中相应节点的动态扩散表征;使用双多头注意力机制,进一步捕获静态和动态扩散特征的上下文信息,实现了高精度微观扩散预测。在3个公共数据集上的对比实验结果表明:所提方法优于对比方法,在微观扩散预测的精度上最高提高了9.98%。 展开更多
关键词 社交网络 微观扩散预测 循环神经网络 注意力网络 多头注意力机制
原文传递
融合依存分析和图注意网络的三元组抽取 被引量:4
16
作者 翟社平 柏晓夏 +1 位作者 张宇航 成大宝 《计算机工程与应用》 CSCD 北大核心 2023年第12期148-156,共9页
传统的三元组抽取采用流水线方式分阶段进行命名实体识别和关系抽取,导致实体识别的精度直接影响关系抽取的效果,造成句子上下文信息缺失,以及实体关系重叠问题等。为此,提出了结合依存分析、图注意力网络和对抗训练的三元组联合抽取模... 传统的三元组抽取采用流水线方式分阶段进行命名实体识别和关系抽取,导致实体识别的精度直接影响关系抽取的效果,造成句子上下文信息缺失,以及实体关系重叠问题等。为此,提出了结合依存分析、图注意力网络和对抗训练的三元组联合抽取模型,该模型将句子输入到BiLSTM层提取单词特征,利用可学习的线性单元进行特征强化,同时将句子输入到句法分析层生成的约束矩阵;将强化后的单词特征与依存约束矩阵输入到图注意力网络提取句子序列特征和单词的局部依赖特征,共同计算图注意力系数;再使用Sigmoid层预测出句子中的实体和实体关系;在词嵌入层加入对抗训练改善模型鲁棒性。实验采用公共数据集NYT验证了模型抽取三元组的准确率,同时召回率也显著提升,与现有的流水线和联合方法相比,改善了误差累积、关系重叠问题。 展开更多
关键词 知识 三元组联合抽取 注意力网络 依存分析 对抗训练
下载PDF
基于结构感知混合编码模型的代码注释生成方法 被引量:3
17
作者 蔡瑞初 张盛强 许柏炎 《计算机工程》 CAS CSCD 北大核心 2023年第2期61-69,共9页
代码注释能够提高程序代码的可读性,从而提升软件开发效率并降低成本。现有的代码注释生成方法将程序代码的序列表示或者抽象语法树表示输入到不同结构的编码器网络,无法融合程序代码不同抽象形式的结构特性,导致生成的注释可读性较差... 代码注释能够提高程序代码的可读性,从而提升软件开发效率并降低成本。现有的代码注释生成方法将程序代码的序列表示或者抽象语法树表示输入到不同结构的编码器网络,无法融合程序代码不同抽象形式的结构特性,导致生成的注释可读性较差。构建一种结构感知的混合编码模型,同时考虑程序代码的序列表示和结构表示,通过序列编码层和图编码层分别捕获程序代码的序列信息和语法结构信息,并利用聚合编码过程将两类信息融合至解码器。设计一种结构感知的图注意力网络,通过将程序代码的语法结构的层次和类型信息嵌入图注意力网络的学习参数,有效提升了混合编码模型对程序代码的复杂语法结构的学习能力。实验结果表明,与SiT基准模型相比,混合编码模型在Python和Java数据集上的BLEU、ROUGE-L、METEOR得分分别提高了2.68%、1.47%、3.82%和2.51%、2.24%、3.55%,能生成更准确的代码注释。 展开更多
关键词 代码注释生成 混合编码模型 注意力网络 深度自注意力网络 自然语言处理
下载PDF
基于图神经网络的知识图谱补全研究综述
18
作者 吴越 孙海春 《数据分析与知识发现》 EI CSCD 北大核心 2024年第3期10-28,共19页
【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳... 【目的】通过调研和梳理文献,总结基于图神经网络的知识图谱补全方法。【文献范围】以“Knowledge Graph Completion”、“知识图谱补全”作为检索词在Web of Science、DBLP和CNKI数据库中进行检索,共筛选出79篇文献。【方法】分别归纳总结图卷积神经网络、图注意力网络、图自动编码网络三种基于图神经网络的知识图谱补全方法类别,并对每种类别的技术脉络、典型方法、模型框架优缺点等进行对比论述。【结果】运用知识图谱补全任务的常用数据集和评价指标,从MRR、MR、Hit@k等性能评价角度对各类模型的效果进行对比分析,并对未来研究提出展望。【局限】在实验结果对比中,只讨论了FB15K-237和WN18RR数据集上部分应用较广的模型的评估结果,缺乏全部模型在同一数据集上的对比。【结论】相比基于表示学习模型和基于神经网络模型,基于图神经网络模型具有更好的图谱补全性能,但模型关系复杂性高、过平滑、可扩展性通用性差,这也是未来研究要解决的问题。 展开更多
关键词 知识谱补全 神经网络 卷积神经网络 注意力网络 自动编码网络
原文传递
基于图注意力网络的安卓恶意软件检测 被引量:6
19
作者 岳子巍 方勇 张磊 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第5期82-89,共8页
安卓恶意软件的爆发式增长对恶意软件检测方法提出了更高效、准确的要求.早年的检测方法主要是基于权限、opcode序列等特征,然而这些方法并未充分挖掘程序的结构信息.基于API调用图的方法是目前主流方法之一,它重在捕获结构信息,可准确... 安卓恶意软件的爆发式增长对恶意软件检测方法提出了更高效、准确的要求.早年的检测方法主要是基于权限、opcode序列等特征,然而这些方法并未充分挖掘程序的结构信息.基于API调用图的方法是目前主流方法之一,它重在捕获结构信息,可准确地预测应用程序可能的行为.本文提出一种基于图注意力网络的安卓恶意软件检测方法,该方法通过静态分析构建API调用图来初步表征APK,然后引入SDNE图嵌入算法从API调用图中学习结构特征和内容特征,再通过注意力网络充分融合邻居节点特征向量,进而构成图嵌入进行检测任务.在AMD数据集上的实验结果表明,本文提出的方法可以有效检测恶意软件,准确率为97.87%,F分数为97.40%. 展开更多
关键词 安卓恶意软件 注意力网络 API调用 嵌入
下载PDF
融合图注意力网络和注意力因子分解机的服务推荐方法 被引量:1
20
作者 黄德玲 童夏龙 杨皓栋 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第2期357-366,共10页
为了解决服务推荐过程中的特征稀疏问题、提高服务的语义表示能力,进而提升推荐的准确性和有效性,提出基于图注意力网络(graph attention networks,GAT)研究服务推荐方法,引入服务的组合权重和组合的结构信息,综合利用多种服务特征,提... 为了解决服务推荐过程中的特征稀疏问题、提高服务的语义表示能力,进而提升推荐的准确性和有效性,提出基于图注意力网络(graph attention networks,GAT)研究服务推荐方法,引入服务的组合权重和组合的结构信息,综合利用多种服务特征,提高服务推荐质量。将GAT和注意力因子分解机(attention factorization machine,AFM)结合在一起,利用多头自注意力机制,学习每个节点在图邻域中的重要性;进行信息聚合,处理网络中的不同图结构,以适应服务动态变化的场景。实验结果显示,在数据平衡的情况下,提出的方法性能表现均好于对比方法;在数据不平衡的情况下,提出的方法大部分性能指标也表现良好,达到了提升服务推荐准确性和有效性的目标。 展开更多
关键词 服务推荐 注意力网络 注意力因子分解机 应用程序接口
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部