期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于图数据深度挖掘的旋转机械故障诊断
被引量:
7
1
作者
刘颉
杨超颖
周凯波
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第9期1-5,共5页
针对旋转机械故障诊断过程面临的小样本问题,提出了一种基于图数据深度挖掘的旋转机械故障诊断方法.首先,将利用归一化处理后的监测信号重塑为汉克尔矩阵;然后,将奇异值分解得到的特征向量作为图数据的节点表示,进一步地运用边连接方式...
针对旋转机械故障诊断过程面临的小样本问题,提出了一种基于图数据深度挖掘的旋转机械故障诊断方法.首先,将利用归一化处理后的监测信号重塑为汉克尔矩阵;然后,将奇异值分解得到的特征向量作为图数据的节点表示,进一步地运用边连接方式构建基于奇异值特征向量的图数据;在此基础上,利用构建的图卷积神经网络充分提取图数据中的高层次故障特征敏感信息;最后,利用softmax分类器辨识监测信号故障类别.实验结果表明:该方法能够以30%的小样本训练集实现99.28%的准确率,具备了良好的故障识别能力.
展开更多
关键词
旋转机械
故障诊断
奇异值分解
图
数据
构建
图
卷积神经网络
原文传递
题名
基于图数据深度挖掘的旋转机械故障诊断
被引量:
7
1
作者
刘颉
杨超颖
周凯波
机构
华中科技大学土木与水利工程学院
华中科技大学人工智能与自动化学院
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第9期1-5,共5页
基金
国家重点研发计划资助项目(2020YFB1711203)。
文摘
针对旋转机械故障诊断过程面临的小样本问题,提出了一种基于图数据深度挖掘的旋转机械故障诊断方法.首先,将利用归一化处理后的监测信号重塑为汉克尔矩阵;然后,将奇异值分解得到的特征向量作为图数据的节点表示,进一步地运用边连接方式构建基于奇异值特征向量的图数据;在此基础上,利用构建的图卷积神经网络充分提取图数据中的高层次故障特征敏感信息;最后,利用softmax分类器辨识监测信号故障类别.实验结果表明:该方法能够以30%的小样本训练集实现99.28%的准确率,具备了良好的故障识别能力.
关键词
旋转机械
故障诊断
奇异值分解
图
数据
构建
图
卷积神经网络
Keywords
rotating machinery
fault diagnosis
singular values decomposition
graph data construction
graph convolutional neural network
分类号
TH17 [机械工程—机械制造及自动化]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于图数据深度挖掘的旋转机械故障诊断
刘颉
杨超颖
周凯波
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部