期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多孔卷积神经网络的图像空间结构信息细节表征
1
作者 徐叶军 《盐城工学院学报(自然科学版)》 CAS 2024年第1期20-25,共6页
针对传统图像空间结构信息表征方法存在细节表征模糊度较高、信息训练损失较高等问题,提出一种新的基于多孔卷积神经网络的图像空间结构信息细节表征方法。该方法通过图像空间结构信息细节相似性度量,并以图像的形状、颜色和纹理特征对... 针对传统图像空间结构信息表征方法存在细节表征模糊度较高、信息训练损失较高等问题,提出一种新的基于多孔卷积神经网络的图像空间结构信息细节表征方法。该方法通过图像空间结构信息细节相似性度量,并以图像的形状、颜色和纹理特征对图像空间结构信息细节进行编码,再去除图像冗余信息,利用多孔卷积神经网络对图像空间结构的深度信息进行融合,从而完成图像空间结构信息的细节表征。实验结果表明,基于多孔卷积神经网络的图像空间结构信息细节表征方法在模糊度、训练损失、图像相似性等方面都比传统的3种方法优越,能够清晰地表征图像空间结构信息。 展开更多
关键词 多孔卷积神经网络 图像空间结构 细节表征 冗余信息 深度信息融合
下载PDF
IFS图像空间结构特征及自动目标检测(英文)
2
作者 赵亦工 朱红 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1999年第6期431-437,共7页
一个迭代函数系—IFS(Iterated Function System ) 由一组压缩映射组成, 它描述了研究对象“整体”和“局部”之间的变换构成关系.对于图像来讲,IFS描述了图像“整体”和“局部”之间的空间变换关系,因此,IFS可以视为图像的空间结构模型... 一个迭代函数系—IFS(Iterated Function System ) 由一组压缩映射组成, 它描述了研究对象“整体”和“局部”之间的变换构成关系.对于图像来讲,IFS描述了图像“整体”和“局部”之间的空间变换关系,因此,IFS可以视为图像的空间结构模型,而与IFS有关的参数可以视为反映图像空间结构的特征.IFS的提出起源于分形图像压缩的研究,因此IFS与分形之间存在着密切的和内在的联系.IFS的理论中有两个重要的结论: 一是如果IFS中的压缩映射均为仿射变换,则IFS的吸引子将是一个分形集合;二是实际中所遇到的图像都可以用IFS的吸引子逼近.根据这两个结论,如果限定IFS中的压缩变换均为仿射变换,又图像本身具有分形结构,即图像“整体”和“细节”之间存在仿射变换关系,则用IFS的吸引子逼近图像所产生的误差很小(理论误差值= 0);如果图像本身不具有分形结构,则逼近误差很大.所以,根据IFS逼近误差的大小,即可判定被研究的图像是否具有分形结构特征.大量的理论研究和实验数据分析表明,自然背景的图像符合分形模型,而人造目标的图像不符合分形模型.因此,可以根据IFS逼近误差的大小实现对自然背景中人造目标的检测.提取图像IFS的算法有多种.本文采用Bath FractalTransform (BFT)算法,它是一个原理简单、实现方便。 展开更多
关键词 图像空间结构特性 自动目标检测 IFS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部