光伏电站的发电功率因受不同客观环境因素的影响,其变化规律很难有迹可循,因此对光伏出力进行准确预测是实现光能大规模开发及利用的重要手段。研究将温度以及历史发电功率数据作为输入变量,提出了一种将模糊聚类(Fuzzy C-means)分析法...光伏电站的发电功率因受不同客观环境因素的影响,其变化规律很难有迹可循,因此对光伏出力进行准确预测是实现光能大规模开发及利用的重要手段。研究将温度以及历史发电功率数据作为输入变量,提出了一种将模糊聚类(Fuzzy C-means)分析法与回声状态网络(Echo State Network)算法相结合的模型对样本进行训练和预测,并利用自适应全局和声搜索(Adaptive Global Harmony Search,AGHS)算法优化此模型,最后通过AGHS-FCM-ESN模型与传统的FCM-ESN模型进行预测误差比对,证明此模型可有效提高传统FCM-ESN模型的预测精度,并具有一定的实用性,可确保电网安全稳定地运行。展开更多
为提高光伏发电系统短期出力预测的精度,提出了一种和声搜索(Harmony Search,HS)算法与回声状态网络(Echo State Network,ESN)算法相结合的预测模型。该模型以光伏电站的历史发电量数据和气象数据为基础。首先通过相似日选择算法挑选出...为提高光伏发电系统短期出力预测的精度,提出了一种和声搜索(Harmony Search,HS)算法与回声状态网络(Echo State Network,ESN)算法相结合的预测模型。该模型以光伏电站的历史发电量数据和气象数据为基础。首先通过相似日选择算法挑选出预测日的相似日,将相似日的气象特征向量和预测日的气象特征向量的差值作为预测模型的输入变量;然后选择训练样本,并用和声搜索算法优化后的回声状态网络模型(HS-ESN)对样本进行训练和预测;最后以甘肃某光伏电站为例进行实例验证。实证分析表明,利用和声搜索算法优化回声状态网络预测模型的储备池参数可有效提高回声状态网络的预测精度,因此该模型具有较好的实用价值。展开更多
文摘光伏电站的发电功率因受不同客观环境因素的影响,其变化规律很难有迹可循,因此对光伏出力进行准确预测是实现光能大规模开发及利用的重要手段。研究将温度以及历史发电功率数据作为输入变量,提出了一种将模糊聚类(Fuzzy C-means)分析法与回声状态网络(Echo State Network)算法相结合的模型对样本进行训练和预测,并利用自适应全局和声搜索(Adaptive Global Harmony Search,AGHS)算法优化此模型,最后通过AGHS-FCM-ESN模型与传统的FCM-ESN模型进行预测误差比对,证明此模型可有效提高传统FCM-ESN模型的预测精度,并具有一定的实用性,可确保电网安全稳定地运行。
文摘为提高光伏发电系统短期出力预测的精度,提出了一种和声搜索(Harmony Search,HS)算法与回声状态网络(Echo State Network,ESN)算法相结合的预测模型。该模型以光伏电站的历史发电量数据和气象数据为基础。首先通过相似日选择算法挑选出预测日的相似日,将相似日的气象特征向量和预测日的气象特征向量的差值作为预测模型的输入变量;然后选择训练样本,并用和声搜索算法优化后的回声状态网络模型(HS-ESN)对样本进行训练和预测;最后以甘肃某光伏电站为例进行实例验证。实证分析表明,利用和声搜索算法优化回声状态网络预测模型的储备池参数可有效提高回声状态网络的预测精度,因此该模型具有较好的实用价值。