This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classificati...This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.展开更多
对于球面约束下的四次型极小化问题,可使用DC(difference of convex)规划来求解。现基于近端算法对DC算法进行了一些改进,提出pDCA和aDCA两种算法,并证明了算法局部收敛以及收敛速度至少达到了次线性收敛。数值实验结果表明,与一般的DC...对于球面约束下的四次型极小化问题,可使用DC(difference of convex)规划来求解。现基于近端算法对DC算法进行了一些改进,提出pDCA和aDCA两种算法,并证明了算法局部收敛以及收敛速度至少达到了次线性收敛。数值实验结果表明,与一般的DC算法和对称移位高阶幂法相比,在计算时间和解的最优性方面都得到了很大提升。展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.
文摘对于球面约束下的四次型极小化问题,可使用DC(difference of convex)规划来求解。现基于近端算法对DC算法进行了一些改进,提出pDCA和aDCA两种算法,并证明了算法局部收敛以及收敛速度至少达到了次线性收敛。数值实验结果表明,与一般的DC算法和对称移位高阶幂法相比,在计算时间和解的最优性方面都得到了很大提升。