期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
协同过滤策略的异构双种群蚁群算法 被引量:7
1
作者 朱宏伟 游晓明 刘升 《计算机科学与探索》 CSCD 北大核心 2019年第10期1754-1767,共14页
针对蚁群算法收敛速度较慢,易陷入局部最优等问题,提出一种基于协同过滤策略的异构双种群蚁群算法。针对两个异构种群,引入协同过滤策略,奖励两个种群中蚂蚁更加偏好的路径,使算法更具导向性,加快算法的收敛速度;根据种群之间信息的动... 针对蚁群算法收敛速度较慢,易陷入局部最优等问题,提出一种基于协同过滤策略的异构双种群蚁群算法。针对两个异构种群,引入协同过滤策略,奖励两个种群中蚂蚁更加偏好的路径,使算法更具导向性,加快算法的收敛速度;根据种群之间信息的动态反馈,自适应调整两个种群的交流频率,增加算法多样性;算法停滞时,两个种群协同交互,均化每个种群信息素,跳出局部最优。最后,引入神经网络失活思想,采用城市范围失活的方法,使程序运行时间更短。在对中大规模商旅问题(TSP)测试集仿真实验上,该算法提高了解的质量,保证了算法的多样性,加快了算法的收敛速度。 展开更多
关键词 蚁群算法 双种群 商旅问题(tsp) 协同过滤 城市失活
下载PDF
启发式强化学习机制的异构双种群蚁群算法 被引量:6
2
作者 刘中强 游晓明 刘升 《计算机科学与探索》 CSCD 北大核心 2020年第3期460-469,共10页
针对传统蚁群算法在解决TSP问题时易陷入局部最优、收敛速度较慢的问题,提出了一种基于启发式强化学习的异构双种群蚁群算法。蚁群分为主种群和子种群,主种群负责解的构建和信息素的更新,子种群则是在构建解的同时对主种群的解集进行替... 针对传统蚁群算法在解决TSP问题时易陷入局部最优、收敛速度较慢的问题,提出了一种基于启发式强化学习的异构双种群蚁群算法。蚁群分为主种群和子种群,主种群负责解的构建和信息素的更新,子种群则是在构建解的同时对主种群的解集进行替换。算法初期利用启发式算子自适应地控制两个种群的交流频率,通过偏离度系数控制解的交换方式。前期让子种群的最优解去替换主种群的随机解,增加解的多样性,同时引入强化学习机制对交流后主种群最优路径上的信息素进行自适应的奖赏,以增大最优公共路径以后被选择的概率。后期则控制子种群的最优解去替换主种群的最差解,强化最优路径上信息素的量,并对主种群最优路径上的信息素进行奖赏,进一步提高算法的收敛速度。实验仿真表明,算法能够有效地跳出局部最优,并且解的质量在大规模测试集上有明显的改善。 展开更多
关键词 商旅问题(tsp) 异构双种群 偏离度系数 启发式强化学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部