Inflammatory bowel disease(IBD),the most important being Crohn's disease and ulcerative colitis,results from chronic dysregulation of the mucosal immune system in the gastrointestinal tract.Although the pathogenes...Inflammatory bowel disease(IBD),the most important being Crohn's disease and ulcerative colitis,results from chronic dysregulation of the mucosal immune system in the gastrointestinal tract.Although the pathogenesis of IBD remains unclear,it is widely accepted that genetic,environmental,and immunological factors are involved.Recent studies suggest that intestinal epithelial defenses are important to prevent inflammation by protecting against microbial pathogens and oxidative stresses.To investigate the etiology of IBD,animal models of experimental colitis have been developed and are frequently used to evaluate new anti-inflammatory treatments for IBD.Several models of experimental colitis that demonstrate various pathophysiological aspects of the human disease have been described.In this manuscript,we review the characteristic features of IBD through a discussion of the various chemically induced experimental models of colitis(e.g.dextran sodium sulfate-,2,4,6-trinitrobenzene sulfonic acid-,oxazolone-,acetic acid-,and indomethacin-induced models).We also summarize some regulatory and pathogenic factors demonstrated by these models that can,hopefully,be exploited to develop future therapeutic strategies against IBD.展开更多
基金National Institute of Health grants,No. DK64289,DK74454,and DK43351),IBD grants from the Eli and Edythe Broad Medical Foundation
文摘Inflammatory bowel disease(IBD),the most important being Crohn's disease and ulcerative colitis,results from chronic dysregulation of the mucosal immune system in the gastrointestinal tract.Although the pathogenesis of IBD remains unclear,it is widely accepted that genetic,environmental,and immunological factors are involved.Recent studies suggest that intestinal epithelial defenses are important to prevent inflammation by protecting against microbial pathogens and oxidative stresses.To investigate the etiology of IBD,animal models of experimental colitis have been developed and are frequently used to evaluate new anti-inflammatory treatments for IBD.Several models of experimental colitis that demonstrate various pathophysiological aspects of the human disease have been described.In this manuscript,we review the characteristic features of IBD through a discussion of the various chemically induced experimental models of colitis(e.g.dextran sodium sulfate-,2,4,6-trinitrobenzene sulfonic acid-,oxazolone-,acetic acid-,and indomethacin-induced models).We also summarize some regulatory and pathogenic factors demonstrated by these models that can,hopefully,be exploited to develop future therapeutic strategies against IBD.
文摘近年来对炎症性肠病(inflamrnatory bowel disease,IBD)动物模型的研究显示,非致病常驻菌是启动肠道慢性炎的必要条件,而益生菌能有效减轻各种实验性结肠炎。本研究通过建立与人类溃疡性结肠炎(ulcerative colitis,UC)类似的恶唑酮诱导小鼠结肠炎模型,继以益生菌VSL#3治疗,研究结肠上皮Toll样受体4(Toll like receptor 4,TLR4)及其附属蛋白髓样分化蛋白2(myeloid differential protein 2,MD2)、