为将图像处理技术更好地应用在智能交通中,发挥立体图像质量评价方法的作用,提出一种融合2D和3D卷积神经网络(convolutional neural network,CNN)的立体图像质量评价方法。该模型结合2D-CNN与3D-CNN两个通道;将独眼图输入2D-CNN通道,提...为将图像处理技术更好地应用在智能交通中,发挥立体图像质量评价方法的作用,提出一种融合2D和3D卷积神经网络(convolutional neural network,CNN)的立体图像质量评价方法。该模型结合2D-CNN与3D-CNN两个通道;将独眼图输入2D-CNN通道,提取双目竞争相关特征;将左视图、右视图、和图像和差图像输入3D-CNN通道,通过3D卷积提取双目之间联系的相关特征;应用全连接层,将两个通道提取的特征融合并进行回归分析构建关系模型。在公开的LIVE 3D PhaseⅠ和LIVE 3D PhaseⅡ上的实验结果表明,所提方法与人类的主观感知保持高度一致。展开更多
目的传统模糊C-均值聚类应用于图像分割仅考虑像素本身的聚类问题,无法克服噪声干扰对图像分割结果的影响,不利于受到噪声干扰的工业图像、医学影像和高分遥感影像等进行目标提取、识别和解译。嵌入像素空间邻域信息或局部信息的鲁棒模...目的传统模糊C-均值聚类应用于图像分割仅考虑像素本身的聚类问题,无法克服噪声干扰对图像分割结果的影响,不利于受到噪声干扰的工业图像、医学影像和高分遥感影像等进行目标提取、识别和解译。嵌入像素空间邻域信息或局部信息的鲁棒模糊C-均值聚类分割算法是近年来图像分割理论研究中的热点课题。为此,针对现有的鲁棒核空间模糊聚类算法非常耗时且抑制噪声能力弱、不适合强噪声干扰下大幅面图像快速分割等问题,提出一种快速鲁棒核空间模糊聚类分割算法。方法利用待分割图像中像素邻域的灰度信息和空间位置等信息构建线性加权滤波图像,对其进行鲁棒核空间模糊聚类。为了进一步提高算法实时性,引入当前聚类像素与其邻域像素均值所对应的2维直方图信息,构造一种基于2维直方图的鲁棒核空间模糊聚类快速分割最优化数学模型,采用拉格朗日乘子法获得图像分割的像素聚类迭代表达式。结果对大幅面图像添加一定强度的高斯、椒盐以及混合噪声,以及未加噪标准图像的分割测试结果表明,本文算法比基于邻域空间约束的核模糊C-均值聚类等算法的峰值信噪比至少提高1. 5 d B,误分率降低约5%,聚类性能评价的划分系数提高约10%,运行速度比核模糊C-均值聚类和基于邻域空间约束的鲁棒核模糊C-均值聚类算法至少提高30%,与1维直方图核空间模糊C-均值聚类算法具有相当的时间开销,所得分割结果具有较好的主观视觉效果。结论通过理论分析和实验验证,本文算法相比现有空间邻域信息约束的鲁棒核空间模糊聚类等算法具有更强的抗噪鲁棒性、更优的分割性能和实时性,对大幅面遥感、医学等影像快速解译具有积极的促进作用,能更好地满足实时性要求较高场合的图像分割需要。展开更多
文摘为将图像处理技术更好地应用在智能交通中,发挥立体图像质量评价方法的作用,提出一种融合2D和3D卷积神经网络(convolutional neural network,CNN)的立体图像质量评价方法。该模型结合2D-CNN与3D-CNN两个通道;将独眼图输入2D-CNN通道,提取双目竞争相关特征;将左视图、右视图、和图像和差图像输入3D-CNN通道,通过3D卷积提取双目之间联系的相关特征;应用全连接层,将两个通道提取的特征融合并进行回归分析构建关系模型。在公开的LIVE 3D PhaseⅠ和LIVE 3D PhaseⅡ上的实验结果表明,所提方法与人类的主观感知保持高度一致。
文摘目的传统模糊C-均值聚类应用于图像分割仅考虑像素本身的聚类问题,无法克服噪声干扰对图像分割结果的影响,不利于受到噪声干扰的工业图像、医学影像和高分遥感影像等进行目标提取、识别和解译。嵌入像素空间邻域信息或局部信息的鲁棒模糊C-均值聚类分割算法是近年来图像分割理论研究中的热点课题。为此,针对现有的鲁棒核空间模糊聚类算法非常耗时且抑制噪声能力弱、不适合强噪声干扰下大幅面图像快速分割等问题,提出一种快速鲁棒核空间模糊聚类分割算法。方法利用待分割图像中像素邻域的灰度信息和空间位置等信息构建线性加权滤波图像,对其进行鲁棒核空间模糊聚类。为了进一步提高算法实时性,引入当前聚类像素与其邻域像素均值所对应的2维直方图信息,构造一种基于2维直方图的鲁棒核空间模糊聚类快速分割最优化数学模型,采用拉格朗日乘子法获得图像分割的像素聚类迭代表达式。结果对大幅面图像添加一定强度的高斯、椒盐以及混合噪声,以及未加噪标准图像的分割测试结果表明,本文算法比基于邻域空间约束的核模糊C-均值聚类等算法的峰值信噪比至少提高1. 5 d B,误分率降低约5%,聚类性能评价的划分系数提高约10%,运行速度比核模糊C-均值聚类和基于邻域空间约束的鲁棒核模糊C-均值聚类算法至少提高30%,与1维直方图核空间模糊C-均值聚类算法具有相当的时间开销,所得分割结果具有较好的主观视觉效果。结论通过理论分析和实验验证,本文算法相比现有空间邻域信息约束的鲁棒核空间模糊聚类等算法具有更强的抗噪鲁棒性、更优的分割性能和实时性,对大幅面遥感、医学等影像快速解译具有积极的促进作用,能更好地满足实时性要求较高场合的图像分割需要。