期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
周期规律增强的多视角短期电力负荷预测 被引量:1
1
作者 苏伟 肖小龙 +2 位作者 史明明 方鑫 司鑫尧 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期477-486,共10页
短期电力负荷预测对电力系统的可靠运行具有重要意义。现有方法存在如下问题:缺乏对特征之间依赖关系的挖掘;忽略了电力负荷变化的周期性规律。为此,提出一种周期规律增强的多视角短期电力负荷预测网络(EPISODE)方法。EPISODE方法主要包... 短期电力负荷预测对电力系统的可靠运行具有重要意义。现有方法存在如下问题:缺乏对特征之间依赖关系的挖掘;忽略了电力负荷变化的周期性规律。为此,提出一种周期规律增强的多视角短期电力负荷预测网络(EPISODE)方法。EPISODE方法主要包括2个核心组件:多视角特征学习组件和周期规律增强的电力负荷预测组件。前者旨在有效提取电力负荷数据中的静态特征与时序特征,以得到增强的特征表示;后者则是对电力负荷数据进行一般性时序挖掘和周期性时序挖掘,从而得到全面的电力负荷历史数据表征。基于后期融合的方式,实现短期电力负荷预测。在真实公开的电力负荷预测数据集上进行了大量实验。实验结果证明了所提方法相比现有基准方法的先进性。 展开更多
关键词 周期规律增强 短期负荷预测 特征压缩与激励 门控循环单元 注意力神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部