Metal-free indoline dyes for dye-sensitized solar cells were studied by employing quantum chemistry methods. Comparative study of the properties of both ground and excited states of metal-free indoline dyes for dye-se...Metal-free indoline dyes for dye-sensitized solar cells were studied by employing quantum chemistry methods. Comparative study of the properties of both ground and excited states of metal-free indoline dyes for dye-sensitized solar cells revealed: (i) as the number of rhodanine rings increases, the energy difference between HOMO and LUMO decreases and there is a red shift in the absorption spectrum with the binding energy increased, and the transition dipole moment decreased; (ii) Based on an analysis of charge differential density, we observed that the charge and energy are transfered from the phenylethenyl to the indoline and rhodanine rings; (iii) The electron-hole coherences are mainly on the indoline and rhodanine rings, and the exciton sizes are 30 and 40 atoms for indoline dyes with one and two rhodanline rings, respectively. These results serve as a good example of computer-aided design in metal-free indoline dyes for dye-sensitized solar cells.展开更多
基金ACKN0WLEDGMENT This work was supported by the National Nature Science Foundation of China (No.10374040).
文摘Metal-free indoline dyes for dye-sensitized solar cells were studied by employing quantum chemistry methods. Comparative study of the properties of both ground and excited states of metal-free indoline dyes for dye-sensitized solar cells revealed: (i) as the number of rhodanine rings increases, the energy difference between HOMO and LUMO decreases and there is a red shift in the absorption spectrum with the binding energy increased, and the transition dipole moment decreased; (ii) Based on an analysis of charge differential density, we observed that the charge and energy are transfered from the phenylethenyl to the indoline and rhodanine rings; (iii) The electron-hole coherences are mainly on the indoline and rhodanine rings, and the exciton sizes are 30 and 40 atoms for indoline dyes with one and two rhodanline rings, respectively. These results serve as a good example of computer-aided design in metal-free indoline dyes for dye-sensitized solar cells.
基金supported by the National Natural Science Foundation of China (51003082)Key Project of Science and Technology Research of Ministry of Education,China (208089)Natural Science Foundation of Hubei Province,China (2011CDC062)~~