期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
向量角选择和指标删除的高维多目标进化算法
1
作者 顾清华 骆家乐 李学现 《计算机科学与探索》 CSCD 北大核心 2024年第2期425-438,共14页
针对进化算法求解高维多目标优化问题平衡收敛性和多样性所面临的挑战,提出了向量角选择和指标删除的高维多目标进化算法(MOEA/AS-ID)。该算法在环境选择过程中设计了一种包含两种策略的协作机制逐一删除收敛性和多样性差的解以保留精... 针对进化算法求解高维多目标优化问题平衡收敛性和多样性所面临的挑战,提出了向量角选择和指标删除的高维多目标进化算法(MOEA/AS-ID)。该算法在环境选择过程中设计了一种包含两种策略的协作机制逐一删除收敛性和多样性差的解以保留精英个体参与下一代的进化。前者基于向量角的选择策略用于选择一对在目标空间具有相似搜索方向的解,后者基于指标的删除策略采用同时兼顾个体收敛性和分布性的I_(SDE)^(+)指标比较被选择的这一对解,然后删除具有较小指标值的解,进而促使种群朝各个方向收敛到帕累托最优前沿,最终平衡解集的收敛性和多样性。在包含各种特征的3组标准测试系列问题DTLZ、SDTLZ、MaF上,MOEA/AS-ID与近年提出的6个涵盖了当前各种类型的高维多目标进化算法执行了广泛的对比仿真实验和数值结果分析。仿真结果和数值分析表明所提算法MOEA/AS-ID求解各种特征的高维多目标优化问题平衡收敛性和多样性的能力具有较强的竞争力。 展开更多
关键词 进化算法 高维多目标优化 量角选择 指标删除 收敛性 多样性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部