本工作以有序Ni3Fe样品的电子能量损失谱EELS(electron energy loss spectroscopy)的采集、处理和分析为例,叙述了内置(Ω型)与后置能量过滤器在采集和处理电子能量损失谱的工作原理、处理步骤及注意要点。实验结果表明:在采集谱图过程...本工作以有序Ni3Fe样品的电子能量损失谱EELS(electron energy loss spectroscopy)的采集、处理和分析为例,叙述了内置(Ω型)与后置能量过滤器在采集和处理电子能量损失谱的工作原理、处理步骤及注意要点。实验结果表明:在采集谱图过程中,内置Ω型能量过滤器零峰非常稳定,后置GIF(gatan image filter)能量过滤器可以节约采集过程中处理谱图的时间。在处理谱图时发现,利用Ω型能量过滤器采集的电子能量损失谱中谱图的背底曲线与理论拟合结果偏差很大;本文提出了通过数据处理给出的校正因子可以很好地弥补这一偏差。由于Ω型能量过滤器的物距较小,在零峰附近常伴随有衍射点,所以无论样品厚度如何,由Ω型能量过滤器采集的电子能量损失谱必须扣除多重散射的影响。展开更多
文摘本工作以有序Ni3Fe样品的电子能量损失谱EELS(electron energy loss spectroscopy)的采集、处理和分析为例,叙述了内置(Ω型)与后置能量过滤器在采集和处理电子能量损失谱的工作原理、处理步骤及注意要点。实验结果表明:在采集谱图过程中,内置Ω型能量过滤器零峰非常稳定,后置GIF(gatan image filter)能量过滤器可以节约采集过程中处理谱图的时间。在处理谱图时发现,利用Ω型能量过滤器采集的电子能量损失谱中谱图的背底曲线与理论拟合结果偏差很大;本文提出了通过数据处理给出的校正因子可以很好地弥补这一偏差。由于Ω型能量过滤器的物距较小,在零峰附近常伴随有衍射点,所以无论样品厚度如何,由Ω型能量过滤器采集的电子能量损失谱必须扣除多重散射的影响。