This study investigated the regional differences of China′s urban land expansion from the late 1980s to the year of 2008, based on the spatio-temporal analysis of CLCD (China′s land cover/land use database) datasets...This study investigated the regional differences of China′s urban land expansion from the late 1980s to the year of 2008, based on the spatio-temporal analysis of CLCD (China′s land cover/land use database) datasets which were mainly produced from remote sensing imagery data. A newly defined urbanization level index (UI), based on urban land area, is proposed to describe Chinese urban expansion process at 1 kilometer, provincial, regional, and na-tional scales, together with the absolute urban expansion index (UEa) and the relative urbanization expansion index (UEr). The results indicate that the percentages of total land area occupied by urban in the late 1980s, 1995, 2000, 2005, and 2008 were approximately 0.25%, 0.32%, 0.33%, 0.43% and 0.52% of China′s total land area, respectively. Between the late 1980s and 2008, the total urban expansion in the mainland of China was 2.645 × 104 km2, resulting in an annual urban expansion area of about 1322.7 km2/yr, with the UEr of 111.9%. This study also finds that there has been an obvious spatial gradient of urbanization ratio running from the east coast to the west inland, and the urbanization gaps among different regions have persisted over the past two decades. The study also reveals obvious temporal varia-tions of the urbanization rates. There was very little urban growth during the period of 1995-2000 due to the governmental policy factors.展开更多
Observational study indicated that the summer precipitation over Eastern China experienced a notable interdecadal change around the late-1990s. Accompanying this interdecadal change, the dominant mode of anomalous pre...Observational study indicated that the summer precipitation over Eastern China experienced a notable interdecadal change around the late-1990s. Accompanying this interdecadal change, the dominant mode of anomalous precipitation switched from a meridional triple pattern to a dipole pattern, showing a "south-flood-north-drought" structure (with the exception of the Yangtze River Valley). This interdecadal change of summer precipitation over Eastern China was associated with circulation anomalies in the middle/upper troposphere over East Asia, such as changes in winds and corresponding divergence, vertical motion and moisture transportation (divergence), which all exhibit remarkable meridional dipole structures. Furthermore, on the internal dynamic and thermodynamic aspects, the present study investigated the influence of the midtroposphere zonal and meridional flow changes over East Asia on the interdecadal change around the late-1990s. Results suggested that, during 1999-2010, the East Asia subtropical westerly jet weakened and shifted poleward, forming a meridional dipole feature in anomalous zonal flow. This anomalous zonal flow, on one hand, induced changes in three teleconnection patterns over the Eurasian continent, namely the "Silk Road" pattern along the subtropical upper troposphere westerly jet, the East Asia/Pacific (EAP) pattern along the East Asian coast, and the Eurasia (EU) pattern along the polar jet; on the other hand, it brought about cold advection over Northern China, and warm advection over Southern China in the mid-troposphere. Through these two ways, the changes in the zonal flow induced descent over Northern China and ascent over Southern China, which resulted in the anomalous "south-flood-north-drought" feature of the summer precipitation over Eastern China during 1999-2010.展开更多
Summer rainfall is vital for crops in Northeast China. In this study, we investigated large-scale circulation anomalies related to monthly summer rainfall in Northeast China using European Center for Medium-Range Weat...Summer rainfall is vital for crops in Northeast China. In this study, we investigated large-scale circulation anomalies related to monthly summer rainfall in Northeast China using European Center for Medium-Range Weather Forecast ERA-40 reanalysis data and monthly rainfall data from 79 stations in Northeast China. The results show that the interannual variation in rainfall over Northeast China is mainly dominated by a cold vortex in early summer (May-June) and by the East Asian summer monsoon in late summer (July-August). In early summer, corresponding to increased rainfall in Northeast China, an anomalous cyclonic anomaly tilted westward with height appears to the northwest and cold vortices occur frequently. In late summer, the rainfall anomaly is mainly controlled by a northward shift of the local East Asian jet stream in the upper troposphere and the northwest extension of the western Pacific subtropical high (WPSH) in the lower troposphere. The enhanced southwesterly anomaly in the west of the WPSH transports more moisture into Northeast China and results in more rainfall. In addition, compared with that in July, the rainfall in Northeast China in August is also influenced by a mid- and high-latitude blocking high over Northeast Asia.展开更多
基金Under the auspices of National Basic Research Program of China (No. 2010CB950900)National Natural Science Foundation of China (No. 40971223)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-EW-306)
文摘This study investigated the regional differences of China′s urban land expansion from the late 1980s to the year of 2008, based on the spatio-temporal analysis of CLCD (China′s land cover/land use database) datasets which were mainly produced from remote sensing imagery data. A newly defined urbanization level index (UI), based on urban land area, is proposed to describe Chinese urban expansion process at 1 kilometer, provincial, regional, and na-tional scales, together with the absolute urban expansion index (UEa) and the relative urbanization expansion index (UEr). The results indicate that the percentages of total land area occupied by urban in the late 1980s, 1995, 2000, 2005, and 2008 were approximately 0.25%, 0.32%, 0.33%, 0.43% and 0.52% of China′s total land area, respectively. Between the late 1980s and 2008, the total urban expansion in the mainland of China was 2.645 × 104 km2, resulting in an annual urban expansion area of about 1322.7 km2/yr, with the UEr of 111.9%. This study also finds that there has been an obvious spatial gradient of urbanization ratio running from the east coast to the west inland, and the urbanization gaps among different regions have persisted over the past two decades. The study also reveals obvious temporal varia-tions of the urbanization rates. There was very little urban growth during the period of 1995-2000 due to the governmental policy factors.
基金supported by National Key Basic Research Program of China (2009CB421405, 2010CB950403)the Special Scientific Research Fund for Meteorological Public Welfare Profession of China (GYHY201006021)the National Natural Science Foundation of China (41175055 and 40905027)
文摘Observational study indicated that the summer precipitation over Eastern China experienced a notable interdecadal change around the late-1990s. Accompanying this interdecadal change, the dominant mode of anomalous precipitation switched from a meridional triple pattern to a dipole pattern, showing a "south-flood-north-drought" structure (with the exception of the Yangtze River Valley). This interdecadal change of summer precipitation over Eastern China was associated with circulation anomalies in the middle/upper troposphere over East Asia, such as changes in winds and corresponding divergence, vertical motion and moisture transportation (divergence), which all exhibit remarkable meridional dipole structures. Furthermore, on the internal dynamic and thermodynamic aspects, the present study investigated the influence of the midtroposphere zonal and meridional flow changes over East Asia on the interdecadal change around the late-1990s. Results suggested that, during 1999-2010, the East Asia subtropical westerly jet weakened and shifted poleward, forming a meridional dipole feature in anomalous zonal flow. This anomalous zonal flow, on one hand, induced changes in three teleconnection patterns over the Eurasian continent, namely the "Silk Road" pattern along the subtropical upper troposphere westerly jet, the East Asia/Pacific (EAP) pattern along the East Asian coast, and the Eurasia (EU) pattern along the polar jet; on the other hand, it brought about cold advection over Northern China, and warm advection over Southern China in the mid-troposphere. Through these two ways, the changes in the zonal flow induced descent over Northern China and ascent over Southern China, which resulted in the anomalous "south-flood-north-drought" feature of the summer precipitation over Eastern China during 1999-2010.
基金supported by National Technology Support Project (Grant Nos. 2009BAC51B04, 2007BAC29B01)Key Knowledge Innovation Programs of the Chinese Academy of Sciences (Grant No. KZCX2-YW-220)+1 种基金National Natural Science Foundation of China (Grant Nos. 40575047 and 40705036)the New Technology Projects of China Meteorological Administration (Grant No. CMATG2009MS01)
文摘Summer rainfall is vital for crops in Northeast China. In this study, we investigated large-scale circulation anomalies related to monthly summer rainfall in Northeast China using European Center for Medium-Range Weather Forecast ERA-40 reanalysis data and monthly rainfall data from 79 stations in Northeast China. The results show that the interannual variation in rainfall over Northeast China is mainly dominated by a cold vortex in early summer (May-June) and by the East Asian summer monsoon in late summer (July-August). In early summer, corresponding to increased rainfall in Northeast China, an anomalous cyclonic anomaly tilted westward with height appears to the northwest and cold vortices occur frequently. In late summer, the rainfall anomaly is mainly controlled by a northward shift of the local East Asian jet stream in the upper troposphere and the northwest extension of the western Pacific subtropical high (WPSH) in the lower troposphere. The enhanced southwesterly anomaly in the west of the WPSH transports more moisture into Northeast China and results in more rainfall. In addition, compared with that in July, the rainfall in Northeast China in August is also influenced by a mid- and high-latitude blocking high over Northeast Asia.