期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种新型径向基函数神经网络学习算法——递归正交最小二乘法(ROLS) 被引量:7
1
作者 张兴兰 曹长修 梅彬 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第10期56-60,共5页
径向基函数神经网络在很多领域都得到了成功的应用。但迄今为止仍没有一种有效的方法来确定隐层中心数目。笔者将递归正交最小二乘 (ROLS)方法引入RBFNN建模训练 ,利用ROLS算法训练网络后所得的有用信息 ,采用后向选择算法 ,逐步去掉那... 径向基函数神经网络在很多领域都得到了成功的应用。但迄今为止仍没有一种有效的方法来确定隐层中心数目。笔者将递归正交最小二乘 (ROLS)方法引入RBFNN建模训练 ,利用ROLS算法训练网络后所得的有用信息 ,采用后向选择算法 ,逐步去掉那些使网络残差增加最小的中心 ,在得到网络有效中心的同时 ,还满足了精度要求 ,从而大大简化了RBF网络结构 ,节约了大量的存储空间以及计算量。 展开更多
关键词 基函数神经网络 学习算法 递归正交最小二乘法 ROLS 选择算法 网络结构
下载PDF
面向配电网故障数据的BIC评估后向选择方法 被引量:4
2
作者 曾兴东 林荣恒 +1 位作者 邹华 张勇 《北京邮电大学学报》 EI CAS CSCD 北大核心 2017年第3期104-109,共6页
10 kV配电网所处环境复杂,引发故障的原因很多,在使用数据挖掘方法对配电网故障进行分析时,太多的特征会对挖掘模型造成负面影响.为了防止挖掘模型考虑过多无用信息,需首先对数据进行特征选择来实现降维,因此提出了基于贝叶斯信息准则(B... 10 kV配电网所处环境复杂,引发故障的原因很多,在使用数据挖掘方法对配电网故障进行分析时,太多的特征会对挖掘模型造成负面影响.为了防止挖掘模型考虑过多无用信息,需首先对数据进行特征选择来实现降维,因此提出了基于贝叶斯信息准则(BIC)的模型评估后向选择算法,对故障因素进行降维.BIC评估准则能够尽可能地简化模型,降低维度,而后向选择算法可以快速得到最优的简化模型,两者的结合提升了降维的速度,并能够得到更加简化的模型.实验结果表明,采用基于BIC评估的后向选择算法有助于后续模型准确性的提升,可提高训练效率. 展开更多
关键词 配电网故障分析 降维 BIC模型评估 选择算法
原文传递
基于GM(0,N)和RBF的小样本时程数据预测 被引量:2
3
作者 张诚 江琼 《计算机工程与应用》 CSCD 北大核心 2005年第5期62-64,206,共4页
RBF网络具有良好的非线性函数逼近能力,且收敛速度快,而灰色GM(,)静态模型对小样本线性数据的预0N测精度高,将两者有机结合起来,提出了一种新的小样本数据预测方法,即灰色RBF(GRBF)静态预测法。同时,为了提高RBF网络的预测精度和运算效... RBF网络具有良好的非线性函数逼近能力,且收敛速度快,而灰色GM(,)静态模型对小样本线性数据的预0N测精度高,将两者有机结合起来,提出了一种新的小样本数据预测方法,即灰色RBF(GRBF)静态预测法。同时,为了提高RBF网络的预测精度和运算效率,文中采用ROLS和后向选择法来训练网络。将GRBF静态预测方法应用到小样本时程数据的预测中,实验结果表明,此预测方法快捷简便,精度高,具有良好的实用性。 展开更多
关键词 灰色RBF算法RBF神经网络GM(0 N)静态模型 ROIS和选择算法 小样本时程数据
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部