期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于改进SVD及参数优化VMD的轴承故障诊断 被引量:12
1
作者 张莹 殷红 彭珍瑞 《噪声与振动控制》 CSCD 2020年第1期51-58,共8页
为解决轴承早期故障特征难以提取的问题,提出一种基于改进奇异值分解(SVD)及参数优化变分模态分解(VMD)的轴承故障诊断方法。首先,对原始故障信号进行SVD降噪、微弱故障信号的分离,通过包络熵最小、峭度最大原则对其重构矩阵的秩进行优... 为解决轴承早期故障特征难以提取的问题,提出一种基于改进奇异值分解(SVD)及参数优化变分模态分解(VMD)的轴承故障诊断方法。首先,对原始故障信号进行SVD降噪、微弱故障信号的分离,通过包络熵最小、峭度最大原则对其重构矩阵的秩进行优化。其次,对改进SVD降噪后所得信号进行VMD分解,将包络谱幅值峭度和峭度构成新的指标(合成峭度),通过所有本征模态分量(Intrinsic Mode Function,IMF)的合成峭度均值最大原则对VMD的参数进行优化,获得若干的IMFs。最后,根据峭度-欧氏距离指标筛选出含故障信息丰富的IMF,进行包络解调运算,分析信号的包络谱判断轴承故障类型。通过对仿真信号和实测信号进行分析,可成功提取出微弱特征频率信息。由此表明,基于改进SVD及参数优化VMD的轴承故障诊断方法可有效地实现轴承早期故障诊断,具有一定的可靠性和实用性。 展开更多
关键词 故障诊断 奇异值分解 变分模态分解 合成 参数优化
下载PDF
信息熵和合成峭度优化的VMD和PSO-SVM的轴承故障诊断 被引量:10
2
作者 刘臻 彭珍瑞 《机械科学与技术》 CSCD 北大核心 2021年第10期1484-1490,共7页
为了解决变分模态分解参数人为确定的问题,并能够实现轴承故障的精确诊断,构建了一种信息熵和合成峭度优化的变分模态分解(VMD)和粒子群算法优化支持向量机(PSO-SVM)的轴承故障诊断方法。该方法首先运用合成峭度倒数与信息熵乘积的最小... 为了解决变分模态分解参数人为确定的问题,并能够实现轴承故障的精确诊断,构建了一种信息熵和合成峭度优化的变分模态分解(VMD)和粒子群算法优化支持向量机(PSO-SVM)的轴承故障诊断方法。该方法首先运用合成峭度倒数与信息熵乘积的最小值原则对VMD参数进行优化,再由优化的参数对原始故障信号进行变分模态分解,得到既定的若干本征模态分量(IMFs),再选取信息熵与合成峭度倒数的乘积最小的IMF作为最佳IMF,再对其提取故障特征构成特征向量,输入PSO-SVM进行故障分类。最后,运用仿真信号和实际轴承数据验证了本文方法的有效性。 展开更多
关键词 变分模态分解 支持向量机 故障诊断 信息熵 合成
下载PDF
改进MCKD-MEEMD在滚动轴承故障诊断中的应用
3
作者 张超 秦敏敏 张少飞 《机械设计与制造》 北大核心 2024年第7期193-199,共7页
为了解决实际工况中故障信号被噪声掩盖,故障特征频率难以提取的问题,提出改进最大峭度解卷积(MCKD)和改进的集总平均经验模态分解(MEEMD)结合的滚动轴承故障诊断方法。首先,提出使用合成峭度作为指标来选取MCKD的最优参数:位移数M和最... 为了解决实际工况中故障信号被噪声掩盖,故障特征频率难以提取的问题,提出改进最大峭度解卷积(MCKD)和改进的集总平均经验模态分解(MEEMD)结合的滚动轴承故障诊断方法。首先,提出使用合成峭度作为指标来选取MCKD的最优参数:位移数M和最大滤波器长度L;然后将最优参数代入MCKD算法中,得到最佳降噪信号;最后对降噪信号使用MEEMD分解,得到若干本征模态分量(IMF),选取合适的分量做信号重构,再对重构信号做频谱分析,在频谱中可以寻找出故障频率以及其他的信息。通过仿真分析了MEEMD方法的优越性及不足之处,并使用改进MCKD方法对不足处进行了改进,将改进MCKD-MEEMD方法与MEEMD方法以及传统MCKD-MEEMD方法进行了实验对比分析,证明了改进MCKD-MEEMD方法的故障诊断效果更好。 展开更多
关键词 最大相关解卷积 合成 经验模态分解 故障诊断
下载PDF
参数优化VMD和SVM的滚动轴承故障诊断 被引量:10
4
作者 李永琪 彭珍瑞 《机械科学与技术》 CSCD 北大核心 2022年第10期1509-1514,共6页
为了便于选取变分模态分解(VMD)参数、综合考虑轴承故障信号周期冲击性、循环平稳性,各分量与原信号相关性及不同故障诊断的问题,构建了一种天牛须搜索算法(BAS)优化VMD及加权合成峭度提取最优本征模态函数(IMF),并结合布谷鸟算法优化... 为了便于选取变分模态分解(VMD)参数、综合考虑轴承故障信号周期冲击性、循环平稳性,各分量与原信号相关性及不同故障诊断的问题,构建了一种天牛须搜索算法(BAS)优化VMD及加权合成峭度提取最优本征模态函数(IMF),并结合布谷鸟算法优化支持向量机(CS-SVM)的轴承故障诊断方法。先以平均包络熵为BAS的适应度函数优化VMD参数,接着对信号进行VMD分解。然后以加权合成峭度最大优选IMF,对所选IMF提取故障特征并组成特征向量。最后,将其输入CS-SVM中进行故障分类。运用仿真信号和实际轴承数据验证所提方法的可行性。 展开更多
关键词 变分模态分解 天牛须搜索算法 加权合成 布谷鸟算法 支持向量机 平均包络熵
下载PDF
基于参数自适应的VMD滚动轴承故障诊断 被引量:9
5
作者 李永琪 彭珍瑞 《噪声与振动控制》 CSCD 北大核心 2021年第5期139-146,共8页
为了更好地选取变分模态分解(variational mode decomposition,VMD)的参数并综合考虑轴承故障信号周期冲击性及循环平稳性,构建一种平均包络谱峭度结合平均样本熵优化的变分模态分解及加权合成峭度提取最优本征模态分量(intrinsic mode ... 为了更好地选取变分模态分解(variational mode decomposition,VMD)的参数并综合考虑轴承故障信号周期冲击性及循环平稳性,构建一种平均包络谱峭度结合平均样本熵优化的变分模态分解及加权合成峭度提取最优本征模态分量(intrinsic mode function,IMF)的轴承故障诊断方法。首先,分别将平均包络谱峭度的倒数及平均样本熵归一化并求和。然后,以其最小值原则分别优化VMD参数,对信号进行VMD分解得到若干IMFs,计算各IMF加权合成峭度,其值最大即为最优IMF。最后,进行包络谱分析判别故障类型,并运用内圈故障仿真信号和实际轴承数据验证方法的有效性。 展开更多
关键词 故障诊断 变分模态分解 本征模态分量 平均包络谱 平均样本熵 加权合成
下载PDF
基于VMD能量权重法与BWO-SVM的铣刀磨损状态监测 被引量:5
6
作者 赵小惠 杨文彬 +2 位作者 胡胜 谭琦 潘杨 《机电工程》 CAS 北大核心 2022年第12期1762-1768,1783,共8页
针对铣刀磨损状态监测中信号噪声大、监测效率低等问题,提出了一种基于能量权重法的变分模态分解(VMD)与黑寡妇(BWO)-支持向量机(SVM)的铣刀磨损状态监测方法。首先,运用VMD将铣削时产生的振动信号分解成若干固有模态函数(IMF)分量,并... 针对铣刀磨损状态监测中信号噪声大、监测效率低等问题,提出了一种基于能量权重法的变分模态分解(VMD)与黑寡妇(BWO)-支持向量机(SVM)的铣刀磨损状态监测方法。首先,运用VMD将铣削时产生的振动信号分解成若干固有模态函数(IMF)分量,并通过能量加权合成峭度指标自适应提取出了包含磨损状态特征的IMF分量,并进行了信号重构,对重构信号进行了特征提取;然后,利用BWO算法优化SVM的参数,构建了BWO-SVM铣刀磨损状态监测模型;最后,为了验证上述方法的有效性,以某公司真实加工现场的PHM Society 2010铣刀全寿命周期的振动数据进行了实验,并且又通过实际的工程案例对此进行了验证。研究结果表明:通过所提方法自适应提取有效分量并进行信号重构后,降噪效果明显,并通过与遗传算法(GA)和粒子群算法(PSO)优化的SVM相比,经过BWO优化的SVM的训练时间缩短至25.142 s,同时监测精度达到97.246%;采用该方法对铣刀磨损状态进行监测,能够获得更快的识别速度与更高的准确性,提高了铣刀磨损状态监测的效率。 展开更多
关键词 机械摩擦与磨损 变分模态分解 黑寡妇支持向量机 固有模态函数分量 能量加权合成 磨损状态监测模型
下载PDF
基于合成谱峭度优化VMD的滚动轴承故障特征提取
7
作者 薛源 陈志刚 +1 位作者 王衍学 史梦瑶 《电子测量技术》 北大核心 2024年第9期1-7,共7页
针对滚动轴承振动信号特征在强噪声的情况下难以提取的问题,提出了一种基于合成谱峭度优化变分模态分解的方法。首先,对原始故障信号进行变分模态分解,依据合成谱峭度值最大的原则分别优化VMD的关键参数—模态数和惩罚因子,得到若干本... 针对滚动轴承振动信号特征在强噪声的情况下难以提取的问题,提出了一种基于合成谱峭度优化变分模态分解的方法。首先,对原始故障信号进行变分模态分解,依据合成谱峭度值最大的原则分别优化VMD的关键参数—模态数和惩罚因子,得到若干本征模态分量;然后,计算各IMF峭度,选取峭度值最大的分量作为最优IMF;最后,对最优本征模态分量进行希尔伯特变换,以获得其包络谱,从而实现故障特征频率的提取。通过公开数据集和自制试验台相关数据的分析,表明所提方法能在强噪声背景下有效提取故障信号的故障特征,实现故障类型的判别。 展开更多
关键词 滚动轴承 特征提取 故障诊断 变分模态分解 合成
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部