期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合ResNet与支持向量机的葡萄园冠层图像叶片覆盖度分类 被引量:1
1
作者 代国威 陈稼瑜 樊景超 《江苏农业学报》 CSCD 北大核心 2023年第8期1713-1721,共9页
在视觉感知的基础上,实现作物智能喷洒作业管理是智慧农业重要的组成部分。针对葡萄园智能喷洒作业的需要,本研究构建了一种融合残差网络(ResNet)和支持向量机模型的葡萄园冠层图像叶片覆盖度分类方法。在对葡萄园冠层图像数据集进行数... 在视觉感知的基础上,实现作物智能喷洒作业管理是智慧农业重要的组成部分。针对葡萄园智能喷洒作业的需要,本研究构建了一种融合残差网络(ResNet)和支持向量机模型的葡萄园冠层图像叶片覆盖度分类方法。在对葡萄园冠层图像数据集进行数据增强的基础上,利用不同卷积层数的ResNet模型(ResNet-18、ResNet-34和ResNet-50)提取图像特征向量,结合近邻成分分析(NCA)算法及不同分类模型(Cubic SVM、RBF SVM、Linear SVM、DT、BT、Bayes、KNN、RF),筛选出最优葡萄园冠层图像叶片覆盖度分类方法。结果表明:残差网络模型卷积层数的增加,有利于提高模型的分类精度;葡萄园冠层图像叶片覆盖度适宜的分类方法是利用ResNet-18、ResNet-34和ResNet-50各提取1000个特征向量,进一步利用NCA算法筛选出1000个权重值较大的特征向量,并利用Cubic SVM模型进行分类。该方法较好实现了模型训练时间和分类精度的平衡,既能大幅减少冗余的特征向量,缩短训练时间,还可以保证模型的分类精度。该方法下模型的分类准确率、精确率、召回率分别达98.32%、97.41%、98.73%。本研究建立的葡萄园冠层图像叶片覆盖度分类方法为智慧化的果园管理提供了有效的技术支持。 展开更多
关键词 残差网络 支持向量机 近邻成分分析 葡萄园冠层 叶片覆盖度 分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部