期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于lightGBM框架改进的GBDT风力发电机叶片开裂预测方法
被引量:
5
1
作者
刘钰宸
安静
《应用技术学报》
2020年第1期63-70,共8页
风力发电机叶片开裂直接影响风力发电机运行,采用梯度提升决策树算法与基于lightGBM框架改进的梯度提升决策树算法对风力发电机叶片开裂进行预测。对比分析了预测准确度与可行性。基于lightGBM改进的梯度提升决策树算法分析的风力发电...
风力发电机叶片开裂直接影响风力发电机运行,采用梯度提升决策树算法与基于lightGBM框架改进的梯度提升决策树算法对风力发电机叶片开裂进行预测。对比分析了预测准确度与可行性。基于lightGBM改进的梯度提升决策树算法分析的风力发电机运行数据得出的预测结果优于梯度提升决策树算法,且对于风力发电机叶片开裂预测准确度较高,并具有实用价值。同时该算法能够大幅降低样本中的无效数据,减少计算量。其独立特征合并能够使得划分点特征数量降低,提高风力发电机叶片开裂预测的准确性。最后,风力发电机叶片开裂预测实验结果表明,基于lightGBM改进的梯度提升决策树算法取得了更好的预测结果,计算量更小且能够准确预测风力发电机叶片开裂故障。
展开更多
关键词
lightGBM
梯度提升决策树
皮尔森相关性系数
风力发电机
叶片
开裂
预测
下载PDF
职称材料
题名
一种基于lightGBM框架改进的GBDT风力发电机叶片开裂预测方法
被引量:
5
1
作者
刘钰宸
安静
机构
上海应用技术大学电气与电子工程学院
出处
《应用技术学报》
2020年第1期63-70,共8页
基金
国家自然科学基金(61703279,51775385,61671252)
上海市自然科学基金项目(19ZR1455200)
上海应用技术大学中青年科技人才发展基金(ZQ2018-24)资助。
文摘
风力发电机叶片开裂直接影响风力发电机运行,采用梯度提升决策树算法与基于lightGBM框架改进的梯度提升决策树算法对风力发电机叶片开裂进行预测。对比分析了预测准确度与可行性。基于lightGBM改进的梯度提升决策树算法分析的风力发电机运行数据得出的预测结果优于梯度提升决策树算法,且对于风力发电机叶片开裂预测准确度较高,并具有实用价值。同时该算法能够大幅降低样本中的无效数据,减少计算量。其独立特征合并能够使得划分点特征数量降低,提高风力发电机叶片开裂预测的准确性。最后,风力发电机叶片开裂预测实验结果表明,基于lightGBM改进的梯度提升决策树算法取得了更好的预测结果,计算量更小且能够准确预测风力发电机叶片开裂故障。
关键词
lightGBM
梯度提升决策树
皮尔森相关性系数
风力发电机
叶片
开裂
预测
Keywords
light gradient boosting machine framework(lightGBM)
gradient boosting decision tree(GBDT)
pearson correlation coefficient
wind turbines
blade cracking prediction
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于lightGBM框架改进的GBDT风力发电机叶片开裂预测方法
刘钰宸
安静
《应用技术学报》
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部