The relationship between the self-organization of double vortices (SODVs) and the formation of typhoons was discussed based on six numerical experiments with the Fifth-Generation National Center for Atmospheric Rese...The relationship between the self-organization of double vortices (SODVs) and the formation of typhoons was discussed based on six numerical experiments with the Fifth-Generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) and further discussion was made with a real typhoon case. The results showed that there is a critical distance dc for SODVs in baroclinic atmosphere. When the distance between separated vortices is smaller than or equal to d~, the double vortices self-organize into a typhoon-like vortex with two spiral bands. But the double vortices cannot have such organization if the distance between them is larger than de. The value of dc is about 380 km in the context of ideal conditions in this paper, larger than that achieved in a barotropic model. A typical typhoon case in 2005 (Haitang) was selected to verify the above-mentioned conclusions. It was found that the SODV is one of the important and typical ways for the formation of typhoons.展开更多
The conventional observations data,NCAR/NCEP-2 reanalysis data,and NOAA outgoing longwave radiation data are used to investigate different characteristics of Leo and Neoguri,two April typhoons that ever made landfall ...The conventional observations data,NCAR/NCEP-2 reanalysis data,and NOAA outgoing longwave radiation data are used to investigate different characteristics of Leo and Neoguri,two April typhoons that ever made landfall on the continent of China over the past 60 years.The results showed that both Leo and Neoguri occurred during the La Nina events.Strong convective activity,weak vertical wind shear and upper-level divergence were in favor of the formation of these April typhoons.Leo originated from a monsoon depression and Neoguri evolved from an easterly wave.The meandering moving track of Leo attributed to strong northeast monsoon and a weak and changeable subtropical high;the steady moving track of Neoguri was governed by a strong and stable subtropical high.Leo and Neoguri had similar terrain conditions and intensities during landfall but were different in precipitation as water vapor transport and duration of kinetic uplifting resulted in apparent discrepancies between them.展开更多
基金National Nature Science Foundation of China (40333028)key project of Science and Technology Department of Zhejiang Province (2007C13G1610002)Chinese Meterological Administration’s Special Funds (Meterology) for Scientific Research on Public Causes (GYHY(QX)2007-6-37)
文摘The relationship between the self-organization of double vortices (SODVs) and the formation of typhoons was discussed based on six numerical experiments with the Fifth-Generation National Center for Atmospheric Research/Penn State Mesoscale Model (MM5) and further discussion was made with a real typhoon case. The results showed that there is a critical distance dc for SODVs in baroclinic atmosphere. When the distance between separated vortices is smaller than or equal to d~, the double vortices self-organize into a typhoon-like vortex with two spiral bands. But the double vortices cannot have such organization if the distance between them is larger than de. The value of dc is about 380 km in the context of ideal conditions in this paper, larger than that achieved in a barotropic model. A typical typhoon case in 2005 (Haitang) was selected to verify the above-mentioned conclusions. It was found that the SODV is one of the important and typical ways for the formation of typhoons.
基金Research on Techniques of Forecasting and Pre-warning Typhoons Landing on or Seriously Affecting Guangdong,a Project of Guangdong Science and Technology Bureau (2007B060401016)Natural Science Foundation of China (40730951)
文摘The conventional observations data,NCAR/NCEP-2 reanalysis data,and NOAA outgoing longwave radiation data are used to investigate different characteristics of Leo and Neoguri,two April typhoons that ever made landfall on the continent of China over the past 60 years.The results showed that both Leo and Neoguri occurred during the La Nina events.Strong convective activity,weak vertical wind shear and upper-level divergence were in favor of the formation of these April typhoons.Leo originated from a monsoon depression and Neoguri evolved from an easterly wave.The meandering moving track of Leo attributed to strong northeast monsoon and a weak and changeable subtropical high;the steady moving track of Neoguri was governed by a strong and stable subtropical high.Leo and Neoguri had similar terrain conditions and intensities during landfall but were different in precipitation as water vapor transport and duration of kinetic uplifting resulted in apparent discrepancies between them.