An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods ...An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility.展开更多
Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is p...Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is proposed to decrease the complexity of the circuit. A divided-by-16/17 DMP for application in a digital video broadcasting-terrestrial receiver is realized with a TSMC 0.18μm mixed-signal CMOS process. The programmable & pulse swallow divider in this receiver is designed with a 0.18μm CMOS standard cell library and realized in the same process. The measured results show that the DMP has an output jitter of less than 0.03% and works well with the programmable & pulse swallow divider.展开更多
文摘An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility.
文摘Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is proposed to decrease the complexity of the circuit. A divided-by-16/17 DMP for application in a digital video broadcasting-terrestrial receiver is realized with a TSMC 0.18μm mixed-signal CMOS process. The programmable & pulse swallow divider in this receiver is designed with a 0.18μm CMOS standard cell library and realized in the same process. The measured results show that the DMP has an output jitter of less than 0.03% and works well with the programmable & pulse swallow divider.