Consider the reducibility of a class of nonlinear quasi-periodic systems with multiple eigenvalues under perturbational hypothesis in the neighborhood of equilibrium. That is, consider the following system x = (A + ...Consider the reducibility of a class of nonlinear quasi-periodic systems with multiple eigenvalues under perturbational hypothesis in the neighborhood of equilibrium. That is, consider the following system x = (A + εQ( t) )x + eg(t) + h(x, t), where A is a constant matrix with multiple eigenvalues; h = O(x2) (x-4)) ; and h(x, t), Q(t), and g(t) are analytic quasi-periodic with respect to t with the same frequencies. Under suitable hypotheses of non-resonance conditions and non-degeneracy conditions, for most sufficiently small ε, the system can be reducible to a nonlinear quasi-periodic system with an equilibrium point by means of a quasi-periodic transformation.展开更多
文摘Consider the reducibility of a class of nonlinear quasi-periodic systems with multiple eigenvalues under perturbational hypothesis in the neighborhood of equilibrium. That is, consider the following system x = (A + εQ( t) )x + eg(t) + h(x, t), where A is a constant matrix with multiple eigenvalues; h = O(x2) (x-4)) ; and h(x, t), Q(t), and g(t) are analytic quasi-periodic with respect to t with the same frequencies. Under suitable hypotheses of non-resonance conditions and non-degeneracy conditions, for most sufficiently small ε, the system can be reducible to a nonlinear quasi-periodic system with an equilibrium point by means of a quasi-periodic transformation.