-
题名记忆增强型深度强化学习研究综述
被引量:6
- 1
-
-
作者
汪晨
曾凡玉
郭九霞
-
机构
电子科技大学计算机科学与工程学院
中国民航飞行学院空中交通管理学院
-
出处
《小型微型计算机系统》
CSCD
北大核心
2021年第3期454-461,共8页
-
基金
国家自然科学基金-联合基金项目(U181320052)资助
国家自然科学基金面上项目(6177020680)资助
+2 种基金
国家自然科学基金青年科学基金项目(62003381)资助
国家重点研发计划项目(2018YFC0831801)资助
四川省重点研发项目(17ZDYF3184)资助.
-
文摘
近年来,深度强化学习的取得了飞速发展,为了提高深度强化学习处理高维状态空间或动态复杂环境的能力,研究者将记忆增强型神经网络引入到深度强化学习,并提出了不同的记忆增强型深度强化学习算法,记忆增强型深度强化学习已成为当前的研究热点.本文根据记忆增强型神经网络类型,将记忆增强型深度强化学习分为了4类:基于经验回放的深度强化学习、基于记忆网络的深度强化学习算法、基于情景记忆的深度强化学习算法、基于可微分计算机的深度强化学习.同时,系统性地总结和分析了记忆增强型深度强化学习的一系列研究成果存在的优势和不足.另外,给出了深度强化学习常用的训练环境.最后,对记忆增强型深度强化学习进行了展望,指出了未来研究方向.
-
关键词
深度强化学习
经验回放
记忆网络
情景记忆
可微分计算机
-
Keywords
deep reinforcement learning
experience replay
memory networks
episodic memory
differentiable neural computer
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-