期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用可分性指数的极化SAR图像特征选择与多层SVM分类
被引量:
6
1
作者
李平
徐新
+1 位作者
董浩
邓旭
《计算机应用》
CSCD
北大核心
2018年第1期132-136,170,共6页
可分性指数(SI)可用来选择各类地物的有效分类特征,但在多维特征以及地物可分性较好的情况下,只利用可分性指数进行特征选择不能有效去除特征之间的冗余性。基于此,提出了利用可分性指数并辅以顺序后退(SBS)算法进行特征选择与多层支持...
可分性指数(SI)可用来选择各类地物的有效分类特征,但在多维特征以及地物可分性较好的情况下,只利用可分性指数进行特征选择不能有效去除特征之间的冗余性。基于此,提出了利用可分性指数并辅以顺序后退(SBS)算法进行特征选择与多层支持向量机(SVM)分类的方法。首先,由各类地物在所有特征下的可分性指数选择分类地物和特征;然后,以该地物的分类精度为评估依据,利用顺序后退法筛选特征;其次,由剩余地物之间的可分性指数和顺序后退法依次选择各类地物的分类特征;最后利用多层SVM进行分类。实验结果表明,与只利用可分性指数选择特征进行多层SVM分类的方法相比,所提方法的分类精度提高了2%,各类地物的分类精度均高于86%,且运行时间为原来方法的一半。
展开更多
关键词
合成孔径雷达
特征选择
可分性
指数
顺序后退法
多层支持向量机分类
下载PDF
职称材料
题名
利用可分性指数的极化SAR图像特征选择与多层SVM分类
被引量:
6
1
作者
李平
徐新
董浩
邓旭
机构
武汉大学电子信息学院
出处
《计算机应用》
CSCD
北大核心
2018年第1期132-136,170,共6页
基金
高分辨率观测系统重大专项技术研究与开发项目(03-Y20A10-9001-15/16)
综合减灾空间信息服务应用示范项目~~
文摘
可分性指数(SI)可用来选择各类地物的有效分类特征,但在多维特征以及地物可分性较好的情况下,只利用可分性指数进行特征选择不能有效去除特征之间的冗余性。基于此,提出了利用可分性指数并辅以顺序后退(SBS)算法进行特征选择与多层支持向量机(SVM)分类的方法。首先,由各类地物在所有特征下的可分性指数选择分类地物和特征;然后,以该地物的分类精度为评估依据,利用顺序后退法筛选特征;其次,由剩余地物之间的可分性指数和顺序后退法依次选择各类地物的分类特征;最后利用多层SVM进行分类。实验结果表明,与只利用可分性指数选择特征进行多层SVM分类的方法相比,所提方法的分类精度提高了2%,各类地物的分类精度均高于86%,且运行时间为原来方法的一半。
关键词
合成孔径雷达
特征选择
可分性
指数
顺序后退法
多层支持向量机分类
Keywords
Synthetic Aperture Radar (SAR)
feature selection
Separability Index (SI)
Sequential BackwardSelection (SBS) method
multi-layer Support Vector Machine (SVM) classification
分类号
TP75 [自动化与计算机技术—检测技术与自动化装置]
TN958 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用可分性指数的极化SAR图像特征选择与多层SVM分类
李平
徐新
董浩
邓旭
《计算机应用》
CSCD
北大核心
2018
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部