期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
轴对称Navier-Stokes方程改进的Liouville定理 被引量:1
1
作者 雷震 张旗 赵娜 《中国科学:数学》 CSCD 北大核心 2017年第10期1183-1198,共16页
本文研究不可压缩Navier-Stokes方程的古代解所具有的Liouville性质.在二维情形以及三维轴对称具平凡角向速度(v_θ=0)情形下,本文证明了光滑的温和古代解的"最优"Liouville定理,即当涡度满足一定条件且速度场v关于空间变量... 本文研究不可压缩Navier-Stokes方程的古代解所具有的Liouville性质.在二维情形以及三维轴对称具平凡角向速度(v_θ=0)情形下,本文证明了光滑的温和古代解的"最优"Liouville定理,即当涡度满足一定条件且速度场v关于空间变量次线性增长时,v恒为常向量,并且在速度场线性增长条件下给出了非平凡古代解的反例.其中,在二维情形下,涡度w需要满足的条件为,对所有的t∈(-∞,0)一致成立lim_(|x|→+∞)|w(x,t)|=0;在三维轴对称具平凡角向速度情形下,涡度w需要满足的条件为,对所有的t∈(-∞,0)一致成立lim_(r→+∞)(|w(x,t)|)/r=0.在三维轴对称具非平凡角向速度(v_θ≠0)的情形下,本文证明了,若Γ=rv_θ∈L_t~∞L_x^p(R^3×(-∞,0)),其中1≤p<∞,则有界的温和古代解必为常向量. 展开更多
关键词 NAVIER-STOKES方程 古代 LIOUVILLE定理
原文传递
轴对称Navier-Stokes方程的Liouville型定理
2
作者 雷震 任潇 张旗 《中国科学:数学》 CSCD 北大核心 2021年第6期971-984,共14页
不可压Navier-Stokes方程的有界古代解分类是一个古老而困难的问题,与Navier-Stokes方程整体正则性理论关系密切.特别地,有关于轴对称Navier-Stokes方程的如下Liouville型猜想:对于3维不可压轴对称Navier-Stokes方程,其有界古代解是常数... 不可压Navier-Stokes方程的有界古代解分类是一个古老而困难的问题,与Navier-Stokes方程整体正则性理论关系密切.特别地,有关于轴对称Navier-Stokes方程的如下Liouville型猜想:对于3维不可压轴对称Navier-Stokes方程,其有界古代解是常数.本文给出一种新的加权能量估计的方法,并在适当的Γ=rvθ收敛速率条件下得到Liouville定理;并且,用类似的能量估计,结合紧性方法,给出z-周期稳态解的Liouville定理的一个证明.本文的定理中不需要对速度场假设不自然的衰减速率条件. 展开更多
关键词 NAVIER-STOKES方程 古代 轴对称 LIOUVILLE定理
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部