期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合PCA与自适应K-Means聚类的水电机组故障检测在线方法
被引量:
13
1
作者
徐雄
林海军
+1 位作者
刘悠勇
胡边
《电子测量与仪器学报》
CSCD
北大核心
2022年第3期260-267,共8页
灯泡贯流式水电机组在运行过程中,由于受水力因素、机械、工况等因素影响,很容易导致转轮叶片与转轮室发生故障,严重影响水电机组安全运行。在分析灯泡贯流式水电机组转轮叶片与转轮室故障信号特征的基础上,提出了一种基于K均值(K-Means...
灯泡贯流式水电机组在运行过程中,由于受水力因素、机械、工况等因素影响,很容易导致转轮叶片与转轮室发生故障,严重影响水电机组安全运行。在分析灯泡贯流式水电机组转轮叶片与转轮室故障信号特征的基础上,提出了一种基于K均值(K-Means)和莱特准则(Wright′s criterion)的水电机组故障在线检测方法。该方法利用主元分析(PCA)对水电机组振动和噪声信号特征降维后,融合莱特准则改进传统K均值算法,以实现K值的自适应选择,对特征进行在线聚类,能快速准确识别水轮机变负荷状态与金属扫膛故障。将本文方法应用到五凌电力近尾洲水电站灯泡贯流式机组故障检测中,实验结果表明,采用该方法的故障在线检测准确率为100%、变负荷在线检测准确率为96.7%,运行近10个月没有出现故障误报和漏报,表明了该方法的有效性。
展开更多
关键词
水电机组
故障在线
检测
变
负荷检测
自适应K-Means聚类
主元分析
下载PDF
职称材料
题名
融合PCA与自适应K-Means聚类的水电机组故障检测在线方法
被引量:
13
1
作者
徐雄
林海军
刘悠勇
胡边
机构
湖南师范大学工程与设计学院
湖南大学电气与信息工程学院
五凌电力有限公司
出处
《电子测量与仪器学报》
CSCD
北大核心
2022年第3期260-267,共8页
基金
国家自然科学基金(51775185)
湖南省自然科学基金(2018JJ2261)项目资助
文摘
灯泡贯流式水电机组在运行过程中,由于受水力因素、机械、工况等因素影响,很容易导致转轮叶片与转轮室发生故障,严重影响水电机组安全运行。在分析灯泡贯流式水电机组转轮叶片与转轮室故障信号特征的基础上,提出了一种基于K均值(K-Means)和莱特准则(Wright′s criterion)的水电机组故障在线检测方法。该方法利用主元分析(PCA)对水电机组振动和噪声信号特征降维后,融合莱特准则改进传统K均值算法,以实现K值的自适应选择,对特征进行在线聚类,能快速准确识别水轮机变负荷状态与金属扫膛故障。将本文方法应用到五凌电力近尾洲水电站灯泡贯流式机组故障检测中,实验结果表明,采用该方法的故障在线检测准确率为100%、变负荷在线检测准确率为96.7%,运行近10个月没有出现故障误报和漏报,表明了该方法的有效性。
关键词
水电机组
故障在线
检测
变
负荷检测
自适应K-Means聚类
主元分析
Keywords
hydropower unit
online fault detection
variable load detection
adaptive K-Means clustering
principal component analysis
分类号
TV734 [水利工程—水利水电工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合PCA与自适应K-Means聚类的水电机组故障检测在线方法
徐雄
林海军
刘悠勇
胡边
《电子测量与仪器学报》
CSCD
北大核心
2022
13
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部