针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷...针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。展开更多
目的经典的聚类算法在处理高维数据时存在维数灾难等问题,使得计算成本大幅增加并且效果不佳。以自编码或变分自编码网络构建的聚类网络改善了聚类效果,但是自编码器提取的特征往往比较差,变分自编码器存在后验崩塌等问题,影响了聚类的...目的经典的聚类算法在处理高维数据时存在维数灾难等问题,使得计算成本大幅增加并且效果不佳。以自编码或变分自编码网络构建的聚类网络改善了聚类效果,但是自编码器提取的特征往往比较差,变分自编码器存在后验崩塌等问题,影响了聚类的结果。为此,本文提出了一种基于混合高斯变分自编码器的聚类网络。方法使用混合高斯分布作为隐变量的先验分布构建变分自编码器,并以重建误差和隐变量先验与后验分布之间的KL散度(Kullback-Leibler divergence)构造自编码器的目标函数训练自编码网络;以训练获得的编码器对输入数据进行特征提取,结合聚类层构建聚类网络,以编码器隐层特征的软分配分布与软分配概率辅助目标分布之间的KL散度构建目标函数并训练聚类网络;变分自编码器采用卷积神经网络实现。结果为了验证本文算法的有效性,在基准数据集MNIST(Modified National Institute of Standards and Technology Database)和Fashion-MNIST上评估了该网络的性能,聚类精度(accuracy,ACC)和标准互信息(normalized mutual information,NMI)指标在MNIST数据集上分别为95.86%和91%,在Fashion-MNIST数据集上分别为61.34%和62.5%,与现有方法相比性能有了不同程度的提升。结论实验结果表明,本文网络取得了较好的聚类效果,且优于当前流行的多种聚类方法。展开更多
针对潜变量空间解耦具有可选择性地调整数据属性,实现更可控的数据生成的特性,提出一种提高解耦任务度量指标的方法.该方法在编码器阶段,运用自注意力机制和残差网络,使模型更有效地捕捉长期依赖关系,增强模型的维度适应性.在训练阶段,...针对潜变量空间解耦具有可选择性地调整数据属性,实现更可控的数据生成的特性,提出一种提高解耦任务度量指标的方法.该方法在编码器阶段,运用自注意力机制和残差网络,使模型更有效地捕捉长期依赖关系,增强模型的维度适应性.在训练阶段,提出新颖损失函数使潜变量空间编码维度与属性值趋向单调关系,从而更好地调节损失函数所处区间范围,达到优化目的.通过对比实验表明,本模型和方法在图像的潜变量空间解耦生成上优于变分自编码机(variational auto encoder,VAE)及属性正则化(AR-VAE)模型模型,且具有更为轻量级的网络架构.展开更多
文摘针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。
文摘目的经典的聚类算法在处理高维数据时存在维数灾难等问题,使得计算成本大幅增加并且效果不佳。以自编码或变分自编码网络构建的聚类网络改善了聚类效果,但是自编码器提取的特征往往比较差,变分自编码器存在后验崩塌等问题,影响了聚类的结果。为此,本文提出了一种基于混合高斯变分自编码器的聚类网络。方法使用混合高斯分布作为隐变量的先验分布构建变分自编码器,并以重建误差和隐变量先验与后验分布之间的KL散度(Kullback-Leibler divergence)构造自编码器的目标函数训练自编码网络;以训练获得的编码器对输入数据进行特征提取,结合聚类层构建聚类网络,以编码器隐层特征的软分配分布与软分配概率辅助目标分布之间的KL散度构建目标函数并训练聚类网络;变分自编码器采用卷积神经网络实现。结果为了验证本文算法的有效性,在基准数据集MNIST(Modified National Institute of Standards and Technology Database)和Fashion-MNIST上评估了该网络的性能,聚类精度(accuracy,ACC)和标准互信息(normalized mutual information,NMI)指标在MNIST数据集上分别为95.86%和91%,在Fashion-MNIST数据集上分别为61.34%和62.5%,与现有方法相比性能有了不同程度的提升。结论实验结果表明,本文网络取得了较好的聚类效果,且优于当前流行的多种聚类方法。
文摘针对潜变量空间解耦具有可选择性地调整数据属性,实现更可控的数据生成的特性,提出一种提高解耦任务度量指标的方法.该方法在编码器阶段,运用自注意力机制和残差网络,使模型更有效地捕捉长期依赖关系,增强模型的维度适应性.在训练阶段,提出新颖损失函数使潜变量空间编码维度与属性值趋向单调关系,从而更好地调节损失函数所处区间范围,达到优化目的.通过对比实验表明,本模型和方法在图像的潜变量空间解耦生成上优于变分自编码机(variational auto encoder,VAE)及属性正则化(AR-VAE)模型模型,且具有更为轻量级的网络架构.