期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于无监督多源数据特征解析的网络威胁态势评估
被引量:
13
1
作者
杨宏宇
王峰岩
《通信学报》
EI
CSCD
北大核心
2020年第2期143-154,共12页
针对监督式神经网络测试网络威胁时需根据数据类别标记进行建模的局限性,提出了一种基于无监督多源数据特征解析的网络威胁态势评估方法。首先,设计了一个面向安全威胁评估的变分自动编码器-生成式对抗网络(V-G),将只包含正常网络流量...
针对监督式神经网络测试网络威胁时需根据数据类别标记进行建模的局限性,提出了一种基于无监督多源数据特征解析的网络威胁态势评估方法。首先,设计了一个面向安全威胁评估的变分自动编码器-生成式对抗网络(V-G),将只包含正常网络流量的训练数据集输入V-G的网络集合层进行模型训练,并计算各层网络输出的重构误差。然后,通过输出层的三层变分自动编码器重构误差学习并获取训练异常阈值,使用包含异常网络流量的测试数据集测试分组威胁并统计每组测试的威胁发生概率。最后,根据威胁发生概率确定网络安全威胁严重度,结合威胁影响度计算威胁态势值以获取网络威胁态势。仿真实验结果表明,所提方法对网络威胁具有较强的表征能力,能够有效直观地评估网络威胁的整体态势。
展开更多
关键词
无监督
多源数据特征解析
变
分
自动编码
器
-
生成式
对抗
网络
威胁发生概率
威胁态势评估
下载PDF
职称材料
基于无监督生成推理的网络安全威胁态势评估方法
被引量:
20
2
作者
杨宏宇
王峰岩
吕伟力
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第6期474-484,共11页
针对基于数据类别标记的监督式网络数据建模方式在评估网络威胁态势时存在计算成本高,效率低和耗时长的问题,该文提出一种基于无监督生成推理的网络安全威胁态势评估方法。首先,设计一种变分自动编码器-生成式对抗网络(VAE-GAN)模型,将...
针对基于数据类别标记的监督式网络数据建模方式在评估网络威胁态势时存在计算成本高,效率低和耗时长的问题,该文提出一种基于无监督生成推理的网络安全威胁态势评估方法。首先,设计一种变分自动编码器-生成式对抗网络(VAE-GAN)模型,将只包含正常网络流量的训练数据集输入到由VAE-GAN组成的网络集合层进行训练,统计每层网络输出的重构误差,并使用输出层的3层变分自动编码器训练重构误差;然后使用包含异常网络流量的测试数据集进行分组威胁测试,统计每组测试的威胁发生概率;最后根据威胁发生概率确定网络安全威胁严重度,结合威胁影响度计算威胁态势值对网络安全威胁态势进行评估。仿真实验结果表明,与反向传播(BP)和径向基函数(RBF)方法相比,该方法能够更直观地评估网络威胁的整体态势,对网络威胁具有更好的表征效果。
展开更多
关键词
无监督
生成
推理
变
分
自动编码
器
-
生成式
对抗
网络
(VAE-GAN)
威胁发生概率
威胁态势评估
原文传递
基于VAE-GAN数据增强算法的小样本滚动轴承故障分类方法
被引量:
2
3
作者
张钊光
蒋庆磊
+3 位作者
詹瑜滨
侯修群
郑英
崔运佳
《原子能科学技术》
EI
CAS
CSCD
北大核心
2023年第S01期228-237,共10页
近些年,数据增强算法被广泛应用于小样本故障分类中。然而,传统的数据增强模型在训练中经常出现梯度爆炸、梯度消失等问题,这在一定程度上限制了其在滚动轴承故障分类上的应用。为了解决上述问题,提出了一种新的模型框架。该模型首先将...
近些年,数据增强算法被广泛应用于小样本故障分类中。然而,传统的数据增强模型在训练中经常出现梯度爆炸、梯度消失等问题,这在一定程度上限制了其在滚动轴承故障分类上的应用。为了解决上述问题,提出了一种新的模型框架。该模型首先将滚动轴承的原始一维振动数据通过连续小波变换(CWT)转换为二维图像,然后利用变分自动编码生成式对抗网络(VAE-GAN)对图像数据做样本增强,最后利用生成图片和原图片共同训练一个卷积神经网络(CNN)故障分类器。使用凯斯西储大学实验室的公开数据集对所提出的方法进行了验证。实验结果表明,与其他模型相比,所提出的模型具有更优越的性能。
展开更多
关键词
小样本
滚动轴承
故障诊断
连续小波
变
换
变
分
自动编码
生成式
对抗
网络
卷积神经
网络
下载PDF
职称材料
题名
基于无监督多源数据特征解析的网络威胁态势评估
被引量:
13
1
作者
杨宏宇
王峰岩
机构
中国民航大学计算机科学与技术学院
出处
《通信学报》
EI
CSCD
北大核心
2020年第2期143-154,共12页
基金
国家自然科学基金民航联合研究基金资助项目(No.U1833107)~~
文摘
针对监督式神经网络测试网络威胁时需根据数据类别标记进行建模的局限性,提出了一种基于无监督多源数据特征解析的网络威胁态势评估方法。首先,设计了一个面向安全威胁评估的变分自动编码器-生成式对抗网络(V-G),将只包含正常网络流量的训练数据集输入V-G的网络集合层进行模型训练,并计算各层网络输出的重构误差。然后,通过输出层的三层变分自动编码器重构误差学习并获取训练异常阈值,使用包含异常网络流量的测试数据集测试分组威胁并统计每组测试的威胁发生概率。最后,根据威胁发生概率确定网络安全威胁严重度,结合威胁影响度计算威胁态势值以获取网络威胁态势。仿真实验结果表明,所提方法对网络威胁具有较强的表征能力,能够有效直观地评估网络威胁的整体态势。
关键词
无监督
多源数据特征解析
变
分
自动编码
器
-
生成式
对抗
网络
威胁发生概率
威胁态势评估
Keywords
unsupervised
multi-source data feature analysis
V-G
threat probability
threat situation assessment
分类号
TP309 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
基于无监督生成推理的网络安全威胁态势评估方法
被引量:
20
2
作者
杨宏宇
王峰岩
吕伟力
机构
中国民航大学计算机科学与技术学院
中国石油天然气股份有限公司管道长春输油气分公司
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第6期474-484,共11页
基金
国家自然科学基金民航联合研究项目(U1833107)。
文摘
针对基于数据类别标记的监督式网络数据建模方式在评估网络威胁态势时存在计算成本高,效率低和耗时长的问题,该文提出一种基于无监督生成推理的网络安全威胁态势评估方法。首先,设计一种变分自动编码器-生成式对抗网络(VAE-GAN)模型,将只包含正常网络流量的训练数据集输入到由VAE-GAN组成的网络集合层进行训练,统计每层网络输出的重构误差,并使用输出层的3层变分自动编码器训练重构误差;然后使用包含异常网络流量的测试数据集进行分组威胁测试,统计每组测试的威胁发生概率;最后根据威胁发生概率确定网络安全威胁严重度,结合威胁影响度计算威胁态势值对网络安全威胁态势进行评估。仿真实验结果表明,与反向传播(BP)和径向基函数(RBF)方法相比,该方法能够更直观地评估网络威胁的整体态势,对网络威胁具有更好的表征效果。
关键词
无监督
生成
推理
变
分
自动编码
器
-
生成式
对抗
网络
(VAE-GAN)
威胁发生概率
威胁态势评估
Keywords
unsupervised generation reasoning
variant auto encoder-generative adversarial network(VAE-GAN)
threat probability
threat situation assessment
分类号
TP309 [自动化与计算机技术—计算机系统结构]
原文传递
题名
基于VAE-GAN数据增强算法的小样本滚动轴承故障分类方法
被引量:
2
3
作者
张钊光
蒋庆磊
詹瑜滨
侯修群
郑英
崔运佳
机构
核动力运行研究所
中核武汉核电运行技术股份有限公司
中核国电漳州能源有限公司
华中科技大学人工智能与自动化学院测控技术“一带一路”联合实验室
出处
《原子能科学技术》
EI
CAS
CSCD
北大核心
2023年第S01期228-237,共10页
文摘
近些年,数据增强算法被广泛应用于小样本故障分类中。然而,传统的数据增强模型在训练中经常出现梯度爆炸、梯度消失等问题,这在一定程度上限制了其在滚动轴承故障分类上的应用。为了解决上述问题,提出了一种新的模型框架。该模型首先将滚动轴承的原始一维振动数据通过连续小波变换(CWT)转换为二维图像,然后利用变分自动编码生成式对抗网络(VAE-GAN)对图像数据做样本增强,最后利用生成图片和原图片共同训练一个卷积神经网络(CNN)故障分类器。使用凯斯西储大学实验室的公开数据集对所提出的方法进行了验证。实验结果表明,与其他模型相比,所提出的模型具有更优越的性能。
关键词
小样本
滚动轴承
故障诊断
连续小波
变
换
变
分
自动编码
生成式
对抗
网络
卷积神经
网络
Keywords
few-shot
rolling bearing
fault diagnosis
continuous wavelet transform
variational autoencoder-generative adversarial network
convolutional neural network
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
TH17 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于无监督多源数据特征解析的网络威胁态势评估
杨宏宇
王峰岩
《通信学报》
EI
CSCD
北大核心
2020
13
下载PDF
职称材料
2
基于无监督生成推理的网络安全威胁态势评估方法
杨宏宇
王峰岩
吕伟力
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020
20
原文传递
3
基于VAE-GAN数据增强算法的小样本滚动轴承故障分类方法
张钊光
蒋庆磊
詹瑜滨
侯修群
郑英
崔运佳
《原子能科学技术》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部