-
题名SAR变体目标识别的卷积神经网络法
被引量:7
- 1
-
-
作者
冯秋晨
彭冬亮
谷雨
-
机构
杭州电子科技大学通信信息传输与融合技术国防重点学科实验室
-
出处
《中国图象图形学报》
CSCD
北大核心
2019年第2期258-268,共11页
-
基金
国家自然科学基金项目(61673146)~~
-
文摘
目的深度学习已经大量应用于合成孔径宽达(SAR)图像目标识别领域,但大多数工作是基于MSTAR数据集的标准操作条件展开研究。当将深度学习应用于同类含变体目标时,例如T72子类,由于目标间差异小,所以仍存在着较大的挑战。本文从极大限度地保留SAR图像输入特征出发,设计一种适用于SAR变体目标识别的深度卷积神经网络结构。方法设计网络主要由多尺度空间特征提取模块和Dense Net中的稠密块、转移层构成。多尺度特征提取模块置于网络底层,通过使用尺寸分别为1×1、3×3、5×5、7×7、9×9的卷积核,提取丰富空间特征的同时保留输入图像信息。为使输入图像信息更加有效地向后传递,基于Dense Net中的稠密块和转移层进行后续网络层设计。在对训练样本进行样本扩充基础上,分析了输入图像分辨率及目标存在平移和不同噪声水平等情况对模型识别精度的影响,与用于SAR图像目标识别的深度模型识别精度在标准操作条件下进行了对比分析。结果实验结果表明,对T72 8类变体目标进行分类,设计的模型能够取得95. 48%的识别精度,在存在目标平移和不同噪声水平情况下,平均识别精度分别达到了94. 61%和86. 36%。对10类目标(包括不含变体和含变体情况)在进行数据增强的情况下进行模型训练与测试,分别达到了99. 38%和98. 81%的识别精度,略优于其他对比模型结构识别精度。结论提出的模型可以充分利用输入图像以及各卷积层输出的特征,学习目标图像的细节差异,不仅适用于SAR图像变体目标的识别任务,同时在标准操作条件下的识别任务也取得了较高的识别结果。
-
关键词
SAR目标识别
变体目标
深度学习
多尺度特征
DenseNet
-
Keywords
SAR target recognition
target variants
deep learning
multi-scale feature
DenseNet
-
分类号
TP753
[自动化与计算机技术—检测技术与自动化装置]
-