期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
基于深度信念网络的多采样点岩性识别 被引量:12
1
作者 李国和 郑阳 +3 位作者 李莹 吴卫江 洪云峰 周晓明 《地球物理学进展》 CSCD 北大核心 2018年第4期1660-1665,共6页
岩性识别是储层预测中的一个重要环节.一方面,传统的机器学习算法缺少特征自动提取的过程,且不能有效利用地震数据局部特征预测储层;另一方面,采用单一采样点作为输入,缺失相邻数据关联关系反映层位信息.针对此不足,本文以多个相邻采样... 岩性识别是储层预测中的一个重要环节.一方面,传统的机器学习算法缺少特征自动提取的过程,且不能有效利用地震数据局部特征预测储层;另一方面,采用单一采样点作为输入,缺失相邻数据关联关系反映层位信息.针对此不足,本文以多个相邻采样点的地震数据作为输入和测井岩性数据作为输出,利用受限玻尔兹曼机(RBM)对多采样点地震数据进行特征提取,逐层堆叠受限玻尔兹曼机(RBM)构建深度信念网络(DBN),并采用随机梯度下降算法对误差进行反向传递学习,最终构建岩性识别模型.以多点地震数据为输入,利用该模型实现地层岩性识别.通过多种智能建模方法实验对比,证实了多个采样点作为输入,隐含利用了部分地层信息,有效地提高了岩性识别的精度. 展开更多
关键词 受限玻尔兹曼 深度信念网络 岩性识别
原文传递
基于深度信念网络的短期负荷预测方法 被引量:169
2
作者 孔祥玉 郑锋 +2 位作者 鄂志君 曹旌 王鑫 《电力系统自动化》 EI CSCD 北大核心 2018年第5期133-139,共7页
电力系统信息化的发展及配电网中分布式电源和电动汽车的大量接入,增加了用电模式的复杂性,对负荷预测的精确度和稳定性提出了更高的要求。提出了一种基于深度信念网络的短期负荷预测方法。该方法包括深度信念网络的构建、模型参数的逐... 电力系统信息化的发展及配电网中分布式电源和电动汽车的大量接入,增加了用电模式的复杂性,对负荷预测的精确度和稳定性提出了更高的要求。提出了一种基于深度信念网络的短期负荷预测方法。该方法包括深度信念网络的构建、模型参数的逐层预训练和微调,以及模型的应用等步骤。在模型参数预训练过程中,采用高斯—伯努利受限玻尔兹曼机(GB-RBM)作为堆叠组成深度信念网络的第1个模块,使其能够更有效地处理对负荷有影响的多类型实值输入数据;并采用无监督训练和有监督训练相结合的部分有监督训练算法进行预训练;利用列文伯格—马夸尔特(LM)优化算法微调预训练阶段得到的网络参数,使其更快收敛于最优解。最后,以实际负荷数据进行算例分析,结果表明,在训练样本较大且负荷影响因素复杂的情况下,所提方法具有更高的预测精度。 展开更多
关键词 电力系统 负荷预测 受限玻尔兹曼 深度信念网络 列文伯格—马夸尔特算法
下载PDF
基于深度信念网络的轴承故障分类识别 被引量:91
3
作者 李巍华 单外平 曾雪琼 《振动工程学报》 EI CSCD 北大核心 2016年第2期340-347,共8页
特征提取是故障智能诊断的关键步骤,然而不同的特征提取方法所得到的特征不同,导致诊断结果也可能有所差异,增加了人工特征选择的难度和不确定性。深度信念网络(Deep Belief Network,DBN)是一种典型的深度学习(Deep Learning)方法,可以... 特征提取是故障智能诊断的关键步骤,然而不同的特征提取方法所得到的特征不同,导致诊断结果也可能有所差异,增加了人工特征选择的难度和不确定性。深度信念网络(Deep Belief Network,DBN)是一种典型的深度学习(Deep Learning)方法,可以通过组合低层特征形成更加抽象的高层表示,发现数据的分布式特征。DBN可直接从低层原始信号出发,通过逐层智能学习得到更好的特征表示,避免特征提取与选择的人工操作,增强识别过程的智能性。将DBN直接应用于轴承振动原始信号的处理,实现轴承故障的分类识别。试验结果表明,DBN可以直接通过原始数据对轴承故障进行分类识别,优先调节时间复杂度偏导数较大的参数,可有效控制DBN的计算成本。 展开更多
关键词 故障诊断 特征提取 受限玻尔兹曼 DBN 故障分类
下载PDF
基于DBN模型的遥感图像分类 被引量:72
4
作者 吕启 窦勇 +2 位作者 牛新 徐佳庆 夏飞 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1911-1918,共8页
遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地... 遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network,DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar,SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果. 展开更多
关键词 遥感图像 合成孔径雷达 地物分类 深度学习 受限玻尔兹曼 深度信念网络
下载PDF
深度学习原理及应用综述 被引量:67
5
作者 付文博 孙涛 +2 位作者 梁藉 闫宝伟 范福新 《计算机科学》 CSCD 北大核心 2018年第B06期11-15,40,共6页
深度学习作为机器学习领域中重要的技术手段,有着广阔的应用前景。文中简述了深度学习的发展历程,介绍了卷积神经网络、受限玻尔兹曼机、自动编码器及其衍生的系列方法模型,以及Caffe,TensorFlow,Torch等6种主流深度框架;论述了深度学... 深度学习作为机器学习领域中重要的技术手段,有着广阔的应用前景。文中简述了深度学习的发展历程,介绍了卷积神经网络、受限玻尔兹曼机、自动编码器及其衍生的系列方法模型,以及Caffe,TensorFlow,Torch等6种主流深度框架;论述了深度学习在图像、语音、视频、文本、数据分析方面的应用情况,分析了深度学习现阶段存在的问题以及未来的发展趋势,为初学者提供了较全面的方法指导与文献索引支持。 展开更多
关键词 深度学习 神经网络 卷积神经网络 受限玻尔兹曼 自动编码器 框架 应用
下载PDF
基于深度学习混合模型迁移学习的图像分类 被引量:61
6
作者 石祥滨 房雪键 +1 位作者 张德园 郭忠强 《系统仿真学报》 CAS CSCD 北大核心 2016年第1期167-173,182,共8页
为提高深度模型迁移学习的特征识别力,提出一种基于受限玻尔兹曼机与卷积神经网络混合模型迁移学习的图像分类方法。该方法融合了2种模型特征的学习能力,提取图像的结构性高阶统计特征进行主题分类。该方法在迁移预训练的卷积神经网络... 为提高深度模型迁移学习的特征识别力,提出一种基于受限玻尔兹曼机与卷积神经网络混合模型迁移学习的图像分类方法。该方法融合了2种模型特征的学习能力,提取图像的结构性高阶统计特征进行主题分类。该方法在迁移预训练的卷积神经网络模型到小目标集时,使用受限玻尔兹曼机代替卷积神经网络模型中的全连接层,在目标集上重新训练受限玻尔兹曼机层和Softmax层,并使用BP算法进行参数调整。加入的受限玻尔兹曼机层不仅全连接所有特征maps,还从最大对数似然的角度学习目标集特有的统计特征,消除了数据集间内容差异对迁移学习特征识别力的影响。在Pascal VOC2007和Caltech101数据集上的实验结果表明,该方法具有较高的分类准确率。 展开更多
关键词 图像分类 卷积神经网络 受限玻尔兹曼 迁移学习 Softmax
下载PDF
深度学习应用技术研究 被引量:59
7
作者 毛勇华 桂小林 +1 位作者 李前 贺兴时 《计算机应用研究》 CSCD 北大核心 2016年第11期3201-3205,共5页
针对深度学习应用技术进行了研究性综述。详细阐述了RBM(受限玻尔兹曼机)逐层预训练后再用BP(反向传播)微调的深度学习贪婪层训练方法,对比分析了BP算法中三种梯度下降的方式,建议在线学习系统采用随机梯度下降,静态离线学习系统采用随... 针对深度学习应用技术进行了研究性综述。详细阐述了RBM(受限玻尔兹曼机)逐层预训练后再用BP(反向传播)微调的深度学习贪婪层训练方法,对比分析了BP算法中三种梯度下降的方式,建议在线学习系统采用随机梯度下降,静态离线学习系统采用随机小批量梯度下降;归纳总结了深度学习深层结构特征,并推荐了目前最受欢迎的五层深度网络结构设计方法。分析了前馈神经网络非线性激活函数的必要性及常用的激活函数优点,并推荐Re LU(rectified linear units)激活函数。最后简要概括了深度卷积神经网络、深度递归神经网络、长短期记忆网络等新型深度网络的特点及应用场景,归纳总结了当前深度学习可能的发展方向。 展开更多
关键词 受限玻尔兹曼 深度神经网络 梯度下降 验证集 监督学习 贪婪层训练方法 深度学习 深度学习层次结构
下载PDF
深度学习中的无监督学习方法综述 被引量:47
8
作者 殷瑞刚 魏帅 +1 位作者 李晗 于洪 《计算机系统应用》 2016年第8期1-7,共7页
从2006年开始,深度神经网络在图像/语音识别、自动驾驶等大数据处理和人工智能领域中都取得了巨大成功,其中无监督学习方法作为深度神经网络中的预训练方法为深度神经网络的成功起到了非常重要的作用.为此,对深度学习中的无监督学习方... 从2006年开始,深度神经网络在图像/语音识别、自动驾驶等大数据处理和人工智能领域中都取得了巨大成功,其中无监督学习方法作为深度神经网络中的预训练方法为深度神经网络的成功起到了非常重要的作用.为此,对深度学习中的无监督学习方法进行了介绍和分析,主要总结了两类常用的无监督学习方法,即确定型的自编码方法和基于概率型受限玻尔兹曼机的对比散度等学习方法,并介绍了这两类方法在深度学习系统中的应用,最后对无监督学习面临的问题和挑战进行了总结和展望. 展开更多
关键词 自编码 受限玻尔兹曼 无监督学习 深度学习 神经网络
下载PDF
基于深度信念网络的文本分类算法 被引量:42
9
作者 陈翠平 《计算机系统应用》 2015年第2期121-126,共6页
随着网络的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术.目前已经有许多不同类型的神经网络应用于文本分类,并且取得良好的效果.但是,大部分模型仅采用文档的少量特征作为输入,没有考虑到足够的信息量;而当考虑到足够的特征... 随着网络的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术.目前已经有许多不同类型的神经网络应用于文本分类,并且取得良好的效果.但是,大部分模型仅采用文档的少量特征作为输入,没有考虑到足够的信息量;而当考虑到足够的特征时,又会发生维数灾难,导致模型难以训练或者训练时间大幅增加.利用深度信念网络从文本中抽取特征,并利用softmax回归分类器对抽取后的特征分类.深度信念网络不仅具有强大的学习能力,同时还能从高维的原始特征中抽取低维度高度可区分的低维特征,因此利用深度信念网络来对文本分类,不仅能够考虑到文档的足够的信息量,而且能够快速的训练.并且实验结果也表明利用深度信念网络实现文本分类的性能很好. 展开更多
关键词 文本分类 受限玻尔兹曼 深度信念网络 softmax回归分类器 文本特征.
下载PDF
结合受限玻尔兹曼机的递归神经网络电力系统短期负荷预测 被引量:41
10
作者 李若晨 朱帆 +1 位作者 朱永利 翟羽佳 《电力系统保护与控制》 EI CSCD 北大核心 2018年第17期83-88,共6页
短期负荷预测的重要性随着电力企业的发展不断提高。传统的负荷预测虽然已经发展相对成熟,但现阶段对负荷预测的准确性要求逐渐提高。为满足发展需要,则要对现有的方法进行改进或建立新的预测方法。通过分析负荷预测数据周期性及周期内... 短期负荷预测的重要性随着电力企业的发展不断提高。传统的负荷预测虽然已经发展相对成熟,但现阶段对负荷预测的准确性要求逐渐提高。为满足发展需要,则要对现有的方法进行改进或建立新的预测方法。通过分析负荷预测数据周期性及周期内的特征,结合递归神经网络在分析时间序列数据的独特优势和受限玻尔兹曼机的强大的无监督学习能力,对结合受限玻尔兹曼机的递归神经网络的工作原理及训练过程进行了阐述。利用该网络进行了电力负荷数据预测实验验证并与其他神经网络进行了比较性实验。结果表明,所提出的神经网络较其他网络在电力短期负荷预测实验中有更高的准确性。 展开更多
关键词 负荷预测 递归神经网络 受限玻尔兹曼 时间序列
下载PDF
利用社交关系的实值条件受限玻尔兹曼机协同过滤推荐算法 被引量:40
11
作者 何洁月 马贝 《计算机学报》 EI CSCD 北大核心 2016年第1期183-195,共13页
利用受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)解决推荐问题已成为一个很有意义的研究方向.目前用于推荐的RBM模型中使用的仅仅是用户评分数据,但用户评分数据存在着严重的数据稀疏性问题.随着互联网对人们生活的不断渗透,社... 利用受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)解决推荐问题已成为一个很有意义的研究方向.目前用于推荐的RBM模型中使用的仅仅是用户评分数据,但用户评分数据存在着严重的数据稀疏性问题.随着互联网对人们生活的不断渗透,社交网络已经成为人们生活中不可缺少的一部分,利用社交网络中的好友信任关系,有助于缓解评分数据的稀疏性问题,提高推荐系统的性能.因此,该文首先提出基于实值的状态玻尔兹曼机(Real-Valued Conditional Restricted Boltzmann Machine,R_CRBM)模型,此模型不需要将评分数据转化为一个K维的0-1向量,并且R_CRBM模型在训练过程中使用了训练数据中潜在的评分/未评分信息;同时该文将最近信任好友关系应用到R_CRBM模型推荐过程中.在百度数据集和Epinions数据集上的实验结果表明R_CRBM模型和引入的最近信任好友关系均有助于提高推荐系统的预测精度;最后,针对大数据环境下,普通平台很难完成R_CRBM模型训练的问题,该文提出基于Spark的并行化方案,较好地解决了该问题. 展开更多
关键词 受限玻尔兹曼 数据稀疏性 R_CRBM 社交网络 信任关系 大数据
下载PDF
深度生成模型综述 被引量:37
12
作者 胡铭菲 左信 刘建伟 《自动化学报》 EI CAS CSCD 北大核心 2022年第1期40-74,共35页
通过学习可观测数据的概率密度而随机生成样本的生成模型在近年来受到人们的广泛关注,网络结构中包含多个隐藏层的深度生成式模型以更出色的生成能力成为研究热点,深度生成模型在计算机视觉、密度估计、自然语言和语音识别、半监督学习... 通过学习可观测数据的概率密度而随机生成样本的生成模型在近年来受到人们的广泛关注,网络结构中包含多个隐藏层的深度生成式模型以更出色的生成能力成为研究热点,深度生成模型在计算机视觉、密度估计、自然语言和语音识别、半监督学习等领域得到成功应用,并给无监督学习提供了良好的范式.本文根据深度生成模型处理似然函数的不同方法将模型分为三类:第一类方法是近似方法,包括采用抽样方法近似计算似然函数的受限玻尔兹曼机(Restricted Boltzmann machine,RBM)和以受限玻尔兹曼机为基础模块的深度置信网络(Deep belief network,DBN)、深度玻尔兹曼机(Deep Boltzmann machines,DBM)和亥姆霍兹机,与之对应的另一种模型是直接优化似然函数变分下界的变分自编码器以及其重要的改进模型,包括重要性加权自编码和可用于半监督学习的深度辅助深度模型;第二类方法是避开求极大似然过程的隐式方法,其代表模型是通过生成器和判别器之间的对抗行为来优化模型参数从而巧妙避开求解似然函数的生成对抗网络以及重要的改进模型,包括WGAN、深度卷积生成对抗网络和当前最顶级的深度生成模型BigGAN;第三类方法是对似然函数进行适当变形的流模型和自回归模型,流模型利用可逆函数构造似然函数后直接优化模型参数,包括以NICE为基础的常规流模型、变分流模型和可逆残差网络(i-ResNet),自回归模型(NADE)将目标函数分解为条件概率乘积的形式,包括神经自回归密度估计(NADE)、像素循环神经网络(PixelRNN)、掩码自编码器(MADE)以及WaveNet等.详细描述上述模型的原理和结构以及模型变形后,阐述各个模型的研究进展和应用,最后对深度生成式模型进行展望和总结. 展开更多
关键词 深度生成式模型 受限玻尔兹曼 变分自编码器 流模型 生成对抗网络 自回归分布估计
下载PDF
基于深度学习的电力大数据融合与异常检测方法 被引量:37
13
作者 刘冬兰 马雷 +2 位作者 刘新 李冬 常英贤 《计算机应用与软件》 北大核心 2018年第4期61-64,136,共5页
为了充分利用电力大数据中的异构数据源挖掘出电网中存在的安全威胁,采用深度受限玻尔兹曼机将不同格式的异构数据映射到统一的嵌入式向量空间,实现了异构数据的融合。采用循环神经网络对得到的嵌入式向量数据建立画像,实现了数据中异... 为了充分利用电力大数据中的异构数据源挖掘出电网中存在的安全威胁,采用深度受限玻尔兹曼机将不同格式的异构数据映射到统一的嵌入式向量空间,实现了异构数据的融合。采用循环神经网络对得到的嵌入式向量数据建立画像,实现了数据中异常事件的检测。实验结果表明,提出的异常检测方法在提出的互信息量度量指标中具有很高的互信息量。此外提出的方法在准确率、误报率和漏报率中的结果也优于其他异常检测方法。 展开更多
关键词 电力大数据 受限玻尔兹曼 循环神经网络 异常检测 深度学习 数据融合
下载PDF
基于深度信念网络的信号重构与轴承故障识别 被引量:35
14
作者 单外平 曾雪琼 《电子设计工程》 2016年第4期67-71,共5页
针对传统智能识别需要复杂的特征提取过程,增加了操作的难度和不确定性,采用深度信念网络(Deep Belief Network,DBN)直接从原始数据对故障智能识别的方法。该方法避免了人工特征提取过程,增强了识别的智能性。将以原始数据为输入的DBN... 针对传统智能识别需要复杂的特征提取过程,增加了操作的难度和不确定性,采用深度信念网络(Deep Belief Network,DBN)直接从原始数据对故障智能识别的方法。该方法避免了人工特征提取过程,增强了识别的智能性。将以原始数据为输入的DBN应用于轴承故障识别,接近100%正确识别率的实验结果表明:DBN可以直接通过原始数据对轴承故障进行高效识别。 展开更多
关键词 特征提取 受限玻尔兹曼 DBN 深度学习 故障识别
下载PDF
基于改进深度受限玻尔兹曼机算法的光伏发电短期功率概率预测 被引量:31
15
作者 王继东 冉冉 宋智林 《电力自动化设备》 EI CSCD 北大核心 2018年第5期43-49,共7页
光伏发电功率受自然环境影响具有明显的波动性、间歇性与随机性,对光伏发电进行短期功率的概率预测可以有效缓解给电网调度、能量管理等方面带来的诸多不利影响。提出一种基于改进深度受限玻尔兹曼机(RBM)算法的光伏发电短期功率概率预... 光伏发电功率受自然环境影响具有明显的波动性、间歇性与随机性,对光伏发电进行短期功率的概率预测可以有效缓解给电网调度、能量管理等方面带来的诸多不利影响。提出一种基于改进深度受限玻尔兹曼机(RBM)算法的光伏发电短期功率概率预测模型,通过灰色关联系数法寻找待预测日的相似日,并利用遗传算法对RBM算法进行参数优化,避免模型参数寻优陷入局部最优,以提高预测模型的预测精度。仿真算例表明,所提模型可以更好地反映光伏发电功率的概率分布。 展开更多
关键词 光伏发电 概率预测 受限玻尔兹曼 灰色关联系数法 遗传算法
下载PDF
基于Gabor小波与深度信念网络的人脸识别方法 被引量:31
16
作者 柴瑞敏 曹振基 《计算机应用》 CSCD 北大核心 2014年第9期2590-2594,共5页
特征提取与模式分类是人脸识别的两个关键问题。针对人脸识别中的高维和小样本问题,从人脸特征的提取与降维算法入手,提出基于受限玻尔兹曼机(RBM)的二次特征提取及降维算法模型。首先把图像均匀分成若干局部图像块并进行量化,再对图像... 特征提取与模式分类是人脸识别的两个关键问题。针对人脸识别中的高维和小样本问题,从人脸特征的提取与降维算法入手,提出基于受限玻尔兹曼机(RBM)的二次特征提取及降维算法模型。首先把图像均匀分成若干局部图像块并进行量化,再对图像进行Gabor小波变换,通过RBM对得到的Gabor人脸特征进行编码,学习数据更本质的特征,从而达到对高维人脸特征降维的目的;并以此为基础提出基于深度信念网络(DBN)的多通道人脸识别算法。在ORL、UMIST和FERET人脸库上对不同样本规模和不同分辨率的图像进行实验,识别结果表明,与采用线性降维和浅层网络的方法相比,所提方法取得了较好的学习效率和很好的识别效果。 展开更多
关键词 特征提取 深度学习 GABOR小波 深度信念网络 降维 受限玻尔兹曼
下载PDF
基于情境感知的高校移动图书馆知识资源推荐研究 被引量:30
17
作者 张潇璐 赵学敏 刘璇 《情报科学》 CSSCI 北大核心 2020年第1期48-52,92,共6页
【目的/意义】基于情境感知的个性化推荐技术引起了广泛关注,成为新的研究热点,本文针对高校移动图书馆提出一种基于情境感知的知识资源推荐模型.【方法/过程】融入情境因素,通过基于改进受限玻尔兹曼机的协同过滤算法来实现读者所处移... 【目的/意义】基于情境感知的个性化推荐技术引起了广泛关注,成为新的研究热点,本文针对高校移动图书馆提出一种基于情境感知的知识资源推荐模型.【方法/过程】融入情境因素,通过基于改进受限玻尔兹曼机的协同过滤算法来实现读者所处移动情境下的知识资源推荐。并通过真实数据集进行实验验证。【结果/结论】提出的基于情境感知的知识资源推荐模型和算法,具有较高的准确度和效率,能够有效解决移动环境下高校读者个性化知识资源推荐问题' 展开更多
关键词 个性化推荐 情境感知 受限玻尔兹曼 知识资源
原文传递
基于深度置信网络和双谱对角切片的低截获概率雷达信号识别 被引量:27
18
作者 王星 周一鹏 +2 位作者 周东青 陈忠辉 田元荣 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2972-2976,共5页
基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监... 基于深度置信网络(DBN)对信号双谱对角切片(BDS)结构特征进行学习,实现低截获概率(LPI)雷达信号识别。该方法首先建立基于受限玻尔兹曼机(RBM)的DBN模型,对LPI雷达信号的BDS数据进行逐层无监督贪心学习,然后运用后向传播(BP)机制在有监督学习方式下根据学习误差对DBN模型参数进行微调,最后基于该BDS-DBN模型实现未知信号的分类和识别。理论分析和仿真结果表明,信噪比高于8 d B时,基于BDS和DBN的识别方法对调频连续波(FMCW),Frank,Costas,FSK/PSK 4类LPI信号的综合识别率保持在93.4%以上,高于传统的主成分分析加支持向量机法(PCA-SVM)和主成分分析加线性判别分析法(PCA-LDA)。 展开更多
关键词 低截获概率雷达 深度学习 深度置信网络 双谱对角切片 受限玻尔兹曼
下载PDF
基于RNN-RBM语言模型的语音识别研究 被引量:27
19
作者 黎亚雄 张坚强 +1 位作者 潘登 胡惮 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1936-1944,共9页
近年来深度学习兴起,其在语言模型领域有着不错的成效,如受限玻尔兹曼机(restricted Boltzmann machine,RBM)语言模型等.不同于N-gram语言模型,这些根植于神经网络的语言模型可以将词序列映射到连续空间来评估下一词出现的概率,以解决... 近年来深度学习兴起,其在语言模型领域有着不错的成效,如受限玻尔兹曼机(restricted Boltzmann machine,RBM)语言模型等.不同于N-gram语言模型,这些根植于神经网络的语言模型可以将词序列映射到连续空间来评估下一词出现的概率,以解决数据稀疏的问题.此外,也有学者使用递归神经网络来建构语言模型,期望由递归的方式充分利用所有上文信息来预测下一词,进而有效处理长距离语言约束.根据递归受限玻尔兹曼机神经网络(recurrent neural network-restricted Boltzmann machine,RNN-RBM)的基础来捕捉长距离信息;另外,也探讨了根据语言中语句的特性来动态地调整语言模型.实验结果显示,使用RNN-RBM语言模型对于大词汇连续语音识别的效能有相当程度的提升. 展开更多
关键词 语音识别 语言模型 神经网络 递归神经网络-受限玻尔兹曼 关联信息
下载PDF
基于深度置信网络和多维信息融合的变压器故障诊断方法 被引量:26
20
作者 刘文泽 张俊 邓焱 《电力工程技术》 2019年第6期16-23,共8页
为了综合多维度信息,快速准确判断变压器缺陷,同时解决多维度信息融合权重难以确定的问题,文中基于深度学习理论,采用稀疏受限玻尔兹曼机搭建了用于故障诊断的深度学习故障分类模型,结合大型变压器的多维度监测量,提出了一种基于深度置... 为了综合多维度信息,快速准确判断变压器缺陷,同时解决多维度信息融合权重难以确定的问题,文中基于深度学习理论,采用稀疏受限玻尔兹曼机搭建了用于故障诊断的深度学习故障分类模型,结合大型变压器的多维度监测量,提出了一种基于深度置信网络和多维度信息融合的变压器故障诊断方法。该方法能够利用变压器海量的无标签多维监测数据作为学习样本,只需对少量带标签数据进行辅助优化,根据变压器实时在线多维监测数据,被训练后的模型能够对变压器本体状态做出准确的故障诊断。对某市220 kV主变进行诊断测试,结果表明,文中提出方法的故障诊断准确率较现有方法高约4%,验证了该方法的可行性和有效性。 展开更多
关键词 电力变压器 多维度信息融合 故障诊断 深度置信网络 稀疏受限玻尔兹曼
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部