A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. ...A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. All the peaks in the TOF spectra can be clearly assigned to the ro-vibrational structures of the HF product. The forward scattering of the HF product at v′=3 has been observed. The small forward scattering of the HF product at v′=2 has also been detected. Detailed theoretical analysis is required in order to fully understand the dynamical origin of these forward scattering products at this high collision energy.展开更多
A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported pol...A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported polarization-dependent differential cross sections provide the most detailed characterization of the influences of reagent alignments on reactivity. To convey the stereo-specific information more accessible to general chemists, we show here, by proper symmetry considerations, how to retrieve from the measurements the relative integral and differential cross sections of two most common collision geometries: the end-on versus side-on attacks. The results, albeit coarse-grained, provide an appealing picture that not only reinforces our intuition about chemical reactivity, but also sheds more light on the conventional (unpolarized) attributes.展开更多
Detailed understanding of the mechanism of the combustion relevant multichannel reactions of O(3P) with unsaturated hydrocarbons (UHs) requires the identification of all primary reaction products, the determination of...Detailed understanding of the mechanism of the combustion relevant multichannel reactions of O(3P) with unsaturated hydrocarbons (UHs) requires the identification of all primary reaction products, the determination of their branching ratios and assessment of intersystem crossing (ISC) between triplet and singlet potential energy surfaces (PESs). This can be best achieved combining crossed-molecular-beam (CMB) experiments with universal, soft ionization, mass-spectrometric detection and time-of-flight analysis to high-level ab initio electronic structure calculations of triplet/singlet PESs and RRKM/Master Equation computations of branching ratios (BRs) including ISC. This approach has been recently demonstrated to be successful for O(3P) reactions with the simplest UHs (alkynes, alkenes, dienes) containing two or three carbon atoms. Here, we extend the combined CMB/theoretical approach to the next member in the diene series containing four C atoms, namely 1,2-butadiene (methylallene) to explore how product distributions, branching ratios and ISC vary with increasing molecular complexity going from O(3P))+propadiene to O(3P)+1,2-butadiene. In particular, we focus on the most important, dominant molecular channels, those forming propene+CO (with branching ratio ∽0.5) and ethylidene+ketene (with branching ratio ∽0.15), that lead to chain termination, to be contrasted to radical forming channels (branching ratio ∽0.35) which lead to chain propagation in combustion systems.展开更多
The exact short time propagator, in a form similar to the Crank-Nicholson method but in the spirit of spectrally transformed Hamiltonian, was proposed to solve the triatomic reactive time-dependent schrodinger equatio...The exact short time propagator, in a form similar to the Crank-Nicholson method but in the spirit of spectrally transformed Hamiltonian, was proposed to solve the triatomic reactive time-dependent schrodinger equation. This new propagator is exact and unconditionally convergent for calculating reactive scattering processes with large time step sizes. In order to improve the computational efficiency, the spectral difference method was applied. This resulted the Hamiltonian with elements confined in a narrow diagonal band. In contrast to our previous theoretical work, the discrete variable representation was applied and resulted in full Hamiltonian matrix. As examples, the collision energy-dependent probability of the triatomic H+H2 and O+O2 reaction are calculated. The numerical results demonstrate that this new propagator is numerically accurate and capable of propagating the wave packet with large time steps. However, the efficiency and accuracy of this new propagator strongly depend on the mathematical method for solving the involved linear equations and the choice of preconditioner.展开更多
Crossed beams scattering study was carried out on the F+HD→DF+H reaction using high- resolution H-atom Rydberg tagging time-of-flight technique. Vibrational state-resolved differential cross sections were measured,...Crossed beams scattering study was carried out on the F+HD→DF+H reaction using high- resolution H-atom Rydberg tagging time-of-flight technique. Vibrational state-resolved differential cross sections were measured, with partial rotational state resolution, at eight collision energies in the range of 2.51-5.60 kJ/mol. Experimental results indicated that the product angular distributions are predominantly backward scattered. As the collision energy increases, the backward scattered peak becomes broader gradually. Dependence of product vibration branching ratios on the collision energy was also determined. The experimental results show that the DF products are highly inverted in the vibrational state distribution and the DF (v'=3) product is the most populated state. Furthermore, the DF (v'=l) product has also been observed at collision energy above 3.97 kJ/mol.展开更多
基金This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China.ACKN0WLEDGMENT This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology and the National Natural Science Foundation of China.
文摘A crossed molecular beams, state-to-state scattering study was carried out on the F+H2→HF+H reaction at the collision energy of 5.02 kJ/mol, using the highly sensitive H atom Rydberg tagging time-of-flight method. All the peaks in the TOF spectra can be clearly assigned to the ro-vibrational structures of the HF product. The forward scattering of the HF product at v′=3 has been observed. The small forward scattering of the HF product at v′=2 has also been detected. Detailed theoretical analysis is required in order to fully understand the dynamical origin of these forward scattering products at this high collision energy.
文摘A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported polarization-dependent differential cross sections provide the most detailed characterization of the influences of reagent alignments on reactivity. To convey the stereo-specific information more accessible to general chemists, we show here, by proper symmetry considerations, how to retrieve from the measurements the relative integral and differential cross sections of two most common collision geometries: the end-on versus side-on attacks. The results, albeit coarse-grained, provide an appealing picture that not only reinforces our intuition about chemical reactivity, but also sheds more light on the conventional (unpolarized) attributes.
基金supported by “Fondazione Cassa Risparmio Perugia” (Project 2015.0331.021 Scientific & Technological Research)EC COST Action CM1404 (Chemistry of Smart Energy Carriers and Technologies– SMARTCATS)+1 种基金the Università degli Studi di Perugia (“Fondo Ricerca di Base 2017”)Italian MIUR and Università degli Studi di Perugia within the program“Department of Excellence-2018-2022-project AMIS”
文摘Detailed understanding of the mechanism of the combustion relevant multichannel reactions of O(3P) with unsaturated hydrocarbons (UHs) requires the identification of all primary reaction products, the determination of their branching ratios and assessment of intersystem crossing (ISC) between triplet and singlet potential energy surfaces (PESs). This can be best achieved combining crossed-molecular-beam (CMB) experiments with universal, soft ionization, mass-spectrometric detection and time-of-flight analysis to high-level ab initio electronic structure calculations of triplet/singlet PESs and RRKM/Master Equation computations of branching ratios (BRs) including ISC. This approach has been recently demonstrated to be successful for O(3P) reactions with the simplest UHs (alkynes, alkenes, dienes) containing two or three carbon atoms. Here, we extend the combined CMB/theoretical approach to the next member in the diene series containing four C atoms, namely 1,2-butadiene (methylallene) to explore how product distributions, branching ratios and ISC vary with increasing molecular complexity going from O(3P))+propadiene to O(3P)+1,2-butadiene. In particular, we focus on the most important, dominant molecular channels, those forming propene+CO (with branching ratio ∽0.5) and ethylidene+ketene (with branching ratio ∽0.15), that lead to chain termination, to be contrasted to radical forming channels (branching ratio ∽0.35) which lead to chain propagation in combustion systems.
文摘The exact short time propagator, in a form similar to the Crank-Nicholson method but in the spirit of spectrally transformed Hamiltonian, was proposed to solve the triatomic reactive time-dependent schrodinger equation. This new propagator is exact and unconditionally convergent for calculating reactive scattering processes with large time step sizes. In order to improve the computational efficiency, the spectral difference method was applied. This resulted the Hamiltonian with elements confined in a narrow diagonal band. In contrast to our previous theoretical work, the discrete variable representation was applied and resulted in full Hamiltonian matrix. As examples, the collision energy-dependent probability of the triatomic H+H2 and O+O2 reaction are calculated. The numerical results demonstrate that this new propagator is numerically accurate and capable of propagating the wave packet with large time steps. However, the efficiency and accuracy of this new propagator strongly depend on the mathematical method for solving the involved linear equations and the choice of preconditioner.
基金V. ACKNOWLEDGMENTS This work was supported by the Chinese Academy of Sciences, the Ministry of Science and Technology, and the National Natural Science Foundation of China.
文摘Crossed beams scattering study was carried out on the F+HD→DF+H reaction using high- resolution H-atom Rydberg tagging time-of-flight technique. Vibrational state-resolved differential cross sections were measured, with partial rotational state resolution, at eight collision energies in the range of 2.51-5.60 kJ/mol. Experimental results indicated that the product angular distributions are predominantly backward scattered. As the collision energy increases, the backward scattered peak becomes broader gradually. Dependence of product vibration branching ratios on the collision energy was also determined. The experimental results show that the DF products are highly inverted in the vibrational state distribution and the DF (v'=3) product is the most populated state. Furthermore, the DF (v'=l) product has also been observed at collision energy above 3.97 kJ/mol.