为研究神华煤反应初期动力学行为,在容积180 m L搅拌高压釜中,使用循环溶剂为供氢溶剂,利用"863"催化剂进行煤直接液化反应。采用传统的集总反应动力学模型,将原料煤分为快反应组分,慢反应组分和惰性组分3部分,并计算各级反...为研究神华煤反应初期动力学行为,在容积180 m L搅拌高压釜中,使用循环溶剂为供氢溶剂,利用"863"催化剂进行煤直接液化反应。采用传统的集总反应动力学模型,将原料煤分为快反应组分,慢反应组分和惰性组分3部分,并计算各级反应动力学活化能。结果表明:快反应煤向油、气和沥青烯组分(PAA)转化的总反应活化能为279.74 k J/mol,慢反应煤向PAA转化的活化能为57.80k J/mol。在开始的4 min内,煤的转化率及PAA的产率由于煤的热解而迅速增加;在后续4~15 min时,转化率增加缓慢,PAA产率基本稳定,并开始降低,表现出了典型的中间产物的特性。当煤的转化率超过55%时,在氢自由基的生成上,溶解氢将发挥重大作用。展开更多
文摘为研究神华煤反应初期动力学行为,在容积180 m L搅拌高压釜中,使用循环溶剂为供氢溶剂,利用"863"催化剂进行煤直接液化反应。采用传统的集总反应动力学模型,将原料煤分为快反应组分,慢反应组分和惰性组分3部分,并计算各级反应动力学活化能。结果表明:快反应煤向油、气和沥青烯组分(PAA)转化的总反应活化能为279.74 k J/mol,慢反应煤向PAA转化的活化能为57.80k J/mol。在开始的4 min内,煤的转化率及PAA的产率由于煤的热解而迅速增加;在后续4~15 min时,转化率增加缓慢,PAA产率基本稳定,并开始降低,表现出了典型的中间产物的特性。当煤的转化率超过55%时,在氢自由基的生成上,溶解氢将发挥重大作用。