期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于颜色系数反向粒子群模型的田间作物分割方法 被引量:5
1
作者 徐艳蕾 朱炽阳 +3 位作者 李陈孝 张奇 孟笑天 王新东 《农业工程学报》 EI CAS CSCD 北大核心 2018年第3期173-179,共7页
针对复杂多变的农田环境下,田间作物分割既要保留农田作物完整外部形态信息,又要满足农田作业速度的要求,该文提出一种基于反向变异粒子群优化(reverse mutation-particle swarm optimization,RM-PSO)算法提取最优颜色系数的田间作物分... 针对复杂多变的农田环境下,田间作物分割既要保留农田作物完整外部形态信息,又要满足农田作业速度的要求,该文提出一种基于反向变异粒子群优化(reverse mutation-particle swarm optimization,RM-PSO)算法提取最优颜色系数的田间作物分割方法。该分割方法分为离线和在线2个部分,离线部分采用反向变异策略提高了初始粒子群群体质量及算法的搜索效率,避免算法早熟收敛,陷入局部最优,引入满意度函数对最优颜色系数进行评价,提取全局最优颜色系数。在线部分采用离线提取的最优颜色系数对作物图像灰度化,进而对灰度化后图像进行阈值分割得到最终的分割结果。试验结果表明,该文方法平均错分率(error distinguish rate)仅为4.8%,低于HSI算法、EXG法以及Mean-shift神经网络分割算法的11.3%、19.5%、5.7%;标准差值为3.1%,相较于HSI算法的7.2%、EXG法的14.7%、及传统PSO方法的7.9%,该文算法具有更高的稳定性;平均处理时间为0.311 s,而HSI方法为0.908 s,Mean-shift神经网络分割算法为1.942 s。该方法不仅能够保证不同光照及不同景物干扰下作物外部形态信息完整,同时处理速度快,鲁棒性好,具有较高的实际应用价值。 展开更多
关键词 作物 图像分割 算法 反向变异策略 粒子群优化 满意度函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部