期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
近红外光谱技术结合反向区间偏最小二乘算法-连续投影算法预测哈密瓜可溶性固形物含量 被引量:6
1
作者 郭阳 史勇 +2 位作者 郭俊先 李雪莲 黄华 《食品与发酵工业》 CAS CSCD 北大核心 2022年第2期248-253,共6页
采用近红外光谱技术结合数据降维的方法,建立了哈密瓜可溶性固形物含量的预测模型,对原始光谱进行特征区间选择,共选取了6个子区间,432个光谱变量;将6个联合子区间的光谱数据分别结合特征选择竞争性自适应重加权采样算法、遗传算法、连... 采用近红外光谱技术结合数据降维的方法,建立了哈密瓜可溶性固形物含量的预测模型,对原始光谱进行特征区间选择,共选取了6个子区间,432个光谱变量;将6个联合子区间的光谱数据分别结合特征选择竞争性自适应重加权采样算法、遗传算法、连续投影算法(successive projections algorithm, SPA)提取特征波长;再使用选取的特征波长以及特征区间波长作为模型的输入变量,利用极限学习机和偏最小二乘算法(partial least squares, PLS)建立哈密瓜可溶性固形物含量预测模型。结果显示,反向区间偏最小二乘算法+SPA+PLS建立的预测模型最优,模型的校正集相关系数为0.923 4,预测集相关系数为0.878 8,模型能够准确预测哈密瓜可溶性固形物含量。 展开更多
关键词 哈密瓜 反向区间最小算法-连续投影算法 最小算法 可溶性固形物 无损检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部