期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双重多视角表示的目标级隐性情感分类
1
作者 崔蒙蒙 刘井平 +2 位作者 阮彤 宋雨秋 杜渂 《计算机工程》 CSCD 北大核心 2024年第1期79-90,共12页
目标级隐性情感分类是自然语言处理中一项重要的情感分析任务。目前多数研究主要侧重于对上下文感知的目标进行建模,且建模信息源较为单一,难以充分捕获到目标词在文本中的隐性情感。针对该问题,提出基于双重多视角表示学习的目标级隐... 目标级隐性情感分类是自然语言处理中一项重要的情感分析任务。目前多数研究主要侧重于对上下文感知的目标进行建模,且建模信息源较为单一,难以充分捕获到目标词在文本中的隐性情感。针对该问题,提出基于双重多视角表示学习的目标级隐性情感分类方法,采用3种视角对目标和输入文本进行建模,分别设计文本自身的表示学习、图视角下的表示学习以及外部知识视角下的表示学习,并通过卷积神经网络将3种视角下的表示进行深度融合。此外,同时采用上述3种视角对目标进行表示学习,将文本的语义表示和目标的语义表示相结合,并输入到情感极性分类器中。在5个公共数据集上进行实验并与8个基线模型的对比结果表明,该方法性能达到了最优水平,在News MTSC-mt和News MTSC-rw隐性情感分析数据集上的F1_m值分别比最好模型提高1.0%和2.6%,在Laptop14、Restaurant14和Twitter显性情感分析数据集上的F1_m值分别比最好模型提高3.6%、1.4%和1.6%。 展开更多
关键词 目标级隐性情感分类 自然语言处理 情感分析 双重视角 表示学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部