期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
基于双通道CNN的单幅图像超分辨率重建 被引量:1
1
作者 姚琴娟 林家骏 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第5期801-808,共8页
卷积神经网络在单幅图像超分辨率重建方面取得了很大的进展,目前的很多方法都选择使用浅层或者深层的卷积神经网络实现图像超分辨率重建。浅层网络结构简单,但容易丢失图像的高频信息,而深层网络可以学习图像的高频纹理特征。本文提出... 卷积神经网络在单幅图像超分辨率重建方面取得了很大的进展,目前的很多方法都选择使用浅层或者深层的卷积神经网络实现图像超分辨率重建。浅层网络结构简单,但容易丢失图像的高频信息,而深层网络可以学习图像的高频纹理特征。本文提出了双通道卷积神经网络。浅层网络负责重建图像的整体轮廓,保留图像的原始信息;深层网络学习图像的高频纹理特征。在深层网络中,使用密集连接的卷积网络,能更有效地恢复图像的高频信息。同时,在两个网络的末端,通过添加额外的卷积层表示融合层,将网络进行融合,重建超分辨率图片。实验结果表明,在大多数情况下,本文模型的重构效果在主观和客观评估中均优于当前代表性的超分辨率重构方法。 展开更多
关键词 超分辨率重建 双通道卷积网络 密集连接 融合层
下载PDF
基于混合特征建模的图卷积网络方法 被引量:3
2
作者 李卓然 冶忠林 +1 位作者 赵海兴 林晶晶 《计算机应用》 CSCD 北大核心 2022年第11期3354-3363,共10页
对于网络中拥有的复杂信息,需要更多的方式抽取其中的有用信息,但现有的单特征图神经网络(GNN)无法完整地刻画网络中的相关特性。针对该问题,提出基于混合特征的图卷积网络(HDGCN)方法。首先,通过图卷积网络(GCN)得到节点的结构特征向... 对于网络中拥有的复杂信息,需要更多的方式抽取其中的有用信息,但现有的单特征图神经网络(GNN)无法完整地刻画网络中的相关特性。针对该问题,提出基于混合特征的图卷积网络(HDGCN)方法。首先,通过图卷积网络(GCN)得到节点的结构特征向量和语义特征向量;然后,通过改进基于注意力机制或门控机制的聚合函数选择性地聚合语义网络节点的特征,增强节点的特征表达能力;最后,通过一种基于双通道图卷积网络的融合机制得到节点的混合特征向量,将节点的结构特征和语义特征联合建模,使特征之间互相补充,提升该方法在后续各种机器学习任务上的表现。在CiteSeer、DBLP和SDBLP三个数据集上进行实验的结果表明,与基于结构特征训练的GCN相比,HDGCN在训练集比例为20%、40%、60%、80%时的Micro‑F1值平均分别提升了2.43、2.14、1.86和2.13个百分点,Macro‑F1值平均分别提升了1.38、0.33、1.06和0.86个百分点。用拼接或平均值作为融合策略时,准确率相差不超过0.5个百分点,可见拼接和平均值均可作为融合策略。HDGCN在节点分类和聚类任务上的准确率高于单纯使用结构或语义网络训练的模型,并且在输出维度为64、学习率为0.001、2层图卷积层和128维注意力向量时的效果最好。 展开更多
关键词 注意力机制 门控机制 双通道卷积网络 结构特征 语义特征
下载PDF
基于双通道卷积神经网络的航班延误预测模型 被引量:28
3
作者 吴仁彪 李佳怡 屈景怡 《计算机应用》 CSCD 北大核心 2018年第7期2100-2106,2112,共8页
针对航班延误预测数据量大、特征提取困难而传统算法处理能力有限的问题,提出一种基于双通道卷积神经网络(DCNN)的航班延误预测模型。首先,该模型将航班数据和气象数据进行融合,应用DCNN进行自动特征提取,采用批归一化(BN)和Padding策... 针对航班延误预测数据量大、特征提取困难而传统算法处理能力有限的问题,提出一种基于双通道卷积神经网络(DCNN)的航班延误预测模型。首先,该模型将航班数据和气象数据进行融合,应用DCNN进行自动特征提取,采用批归一化(BN)和Padding策略优化,提升到港延误等级的分类预测性能;然后,在卷积神经网络(CNN)基础上加入直通通道,以保证特征矩阵的无损传输,增强深度网络的畅通性;同时引入卷积衰减因子对卷积通道的特征矩阵进行稀疏性限制,控制不同网络深度的特征叠加比例,维持模型的稳定性。实验结果表明,所提模型与传统模型相比,具有更强的数据处理能力。通过数据融合,航班延误预测准确率可提高1个百分点;加深网络深度后,该模型能保证梯度的稳定,从而训练更深的网络,使准确率提升至92.1%。该基于DCNN算法的模型特征提取充分,预测性能优于对比模型,可更好地服务于民航决策。 展开更多
关键词 航班延误预测 双通道卷积神经网络 数据融合 直通通道 卷积衰减因子
下载PDF
基于双通道的快速低空无人机检测识别方法 被引量:21
4
作者 马旗 朱斌 +1 位作者 程正东 张杨 《光学学报》 EI CAS CSCD 北大核心 2019年第12期97-107,共11页
以YOLOv3的架构为基础,提出了一种基于双通道的快速低空无人机检测识别方法(Dual-YOLOv3)。该方法将红外与可见光的无人机图像同时输入到深度残差网络中进行特征提取,对所提取的特征图进行融合以增强特征的表达能力,利用多尺度预测网络... 以YOLOv3的架构为基础,提出了一种基于双通道的快速低空无人机检测识别方法(Dual-YOLOv3)。该方法将红外与可见光的无人机图像同时输入到深度残差网络中进行特征提取,对所提取的特征图进行融合以增强特征的表达能力,利用多尺度预测网络对无人机目标进行类别判断和位置回归,得到检测识别结果。在真实采集的双波段无人机数据集上进行对比实验,结果表明,采用平均融合的Dual-YOLOv3-D在mAP(mean of average precision)上较单一数据源的YOLOv3提升了约6.1%,检测速度约为27 s-1。 展开更多
关键词 图像处理 双通道卷积神经网络 低空无人机 特征融合 目标检测
原文传递
利用双通道卷积神经网络的图像超分辨率算法 被引量:18
5
作者 徐冉 张俊格 黄凯奇 《中国图象图形学报》 CSCD 北大核心 2016年第5期556-564,共9页
目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基... 目的图像超分辨率算法在实际应用中有着较为广泛的需求和研究。然而传统基于样本的超分辨率算法均使用简单的图像梯度特征表征低分辨率图像块,这些特征难以有效地区分不同的低分辨率图像块。针对此问题,在传统基于样本超分辨率算法的基础上,提出双通道卷积神经网络学习低分辨率与高分辨率图像块相似度进行图像超分辨率的算法。方法首先利用深度卷积神经网络学习得到有效的低分辨率与高分辨率图像块之间相似性度量,然后根据输入低分辨率图像块与高分辨率图像块字典基元的相似度重构出对应的高分辨率图像块。结果本文算法在Set5和Set14数据集上放大3倍情况下分别取得了平均峰值信噪比(PSNR)为32.53 d B与29.17 d B的效果。结论本文算法从低分辨率与高分辨率图像块相似度学习角度解决图像超分辨率问题,可以更好地保持结果图像中的边缘信息,减弱结果中的振铃现象。本文算法可以很好地适用于自然场景图像的超分辨率增强任务。 展开更多
关键词 图像超分辨率 Pair—wise卷积神经网络 双通道卷积神经网络 图像块相似度学习
原文传递
雷达海上目标双通道卷积神经网络特征融合智能检测方法 被引量:15
6
作者 苏宁远 陈小龙 +1 位作者 陈宝欣 关键 《现代雷达》 CSCD 北大核心 2019年第10期47-52,57,共7页
受复杂海洋环境影响,基于统计理论的海面目标检测方法由于假设条件不成立,在实际应用中难以实现高性能检测,本文从特征提取分类角度,通过深度学习分类方法对目标和杂波的雷达回波信号进行二元分类,提出了一种基于双通道卷积神经网络(DCC... 受复杂海洋环境影响,基于统计理论的海面目标检测方法由于假设条件不成立,在实际应用中难以实现高性能检测,本文从特征提取分类角度,通过深度学习分类方法对目标和杂波的雷达回波信号进行二元分类,提出了一种基于双通道卷积神经网络(DCCNN)的雷达海上目标智能检测方法。首先,对实测海杂波和目标雷达信号进行预处理,得到信号的时间-多普勒谱和幅度信息;然后,构建DCCNN对预处理得到的数据进行智能特征提取,得到信号的特征向量,并对不同特征提取模型性能进行测试;最后,通过阈值可设的Softmax分类器作为检测器对特征向量进行分类,实现虚警率的控制。测试结果表明:与传统的单通道CNN以及无虚警控制Hog-SVM分类算法相比,基于二维卷积核VGG16和一维卷积核Le Net的DCCNN特征提取模型和softmax分类器可实现更高的检测性能,并可以实现虚警率控制,为复杂海杂波背景下目标智能检测提供了新的技术途径。 展开更多
关键词 雷达目标检测 海上目标 特征提取 双通道卷积神经网络 虚警可控 分类器
下载PDF
结合局部二值模式和梯度特征的双通道表情识别 被引量:11
7
作者 张红颖 王汇三 《激光与光电子学进展》 CSCD 北大核心 2020年第14期54-60,共7页
为了进一步提高表情识别准确率,提出一种结合局部二值模式(LBP)和梯度特征的双通道卷积神经网络表情识别算法。首先对采集得到的图像进行预处理,生成对应的梯度图像和LBP图像。针对单一特征对人脸信息表征不全面的问题,将特征提取网络... 为了进一步提高表情识别准确率,提出一种结合局部二值模式(LBP)和梯度特征的双通道卷积神经网络表情识别算法。首先对采集得到的图像进行预处理,生成对应的梯度图像和LBP图像。针对单一特征对人脸信息表征不全面的问题,将特征提取网络分为两个通道,通道一输入梯度图像,提取人脸结构特征,从而更好地对人脸的全局信息进行描述,且对光照变化具有良好的鲁棒性;通道二输入LBP图像,提取人脸纹理特征以保留对五官边缘、亮点等微小特征的敏感性,两个特征相互补充,能够更加全面高效地对人脸特征进行表征,进而提高表情识别的准确率。最后通过加权特征融合网络对两种特征进行融合并利用Softmax对表情进行分类。在CK+、FER2013和Oulu-CASIA数据集上进行实验,分别取得了96.1%、75%和90.1%的平均识别率。结果表明,本文方法能够以较高的准确率识别6种基本面部表情,与单通道表情识别算法相比,取得了更高的识别准确率;相比于其他双通道卷积神经网络,能够以较简单的网络结构取得较好的识别效果。 展开更多
关键词 图像处理 人脸表情识别 双通道卷积神经网络 局部二值模式 梯度特征 特征融合
原文传递
应用双通道卷积神经网络的地震随机噪声压制方法 被引量:8
8
作者 徐彦凯 刘曾梅 +1 位作者 薛亚茹 曹思远 《石油地球物理勘探》 EI CSCD 北大核心 2022年第4期747-756,I0001,共11页
地震资料中随机噪声的压制一直是人们关注的热点。传统方法难以平衡噪声的去除与有效信号的保护,且执行效率低。为此,提出了基于双通道卷积神经网络的随机噪声压制方法。首先,该网络是一个双通道网络,即由两个结构不同的子网络组成,目... 地震资料中随机噪声的压制一直是人们关注的热点。传统方法难以平衡噪声的去除与有效信号的保护,且执行效率低。为此,提出了基于双通道卷积神经网络的随机噪声压制方法。首先,该网络是一个双通道网络,即由两个结构不同的子网络组成,目的是在压制噪声过程中提取到互补有效信息;其次,在下通道子网络中引入空洞卷积增大感受野,充分捕捉到地震资料中的邻域信息,从而更充分地保留细节信息;最后,借鉴残差学习的思想并使用Swish激活函数,提高了网络的降噪性能。模型和实际资料的实验结果表明,所提方法在有效地压制随机噪声的同时能够保留更丰富的纹理细节信息。 展开更多
关键词 地震资料 随机噪声 双通道卷积神经网络 空洞卷积 激活函数
下载PDF
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建 被引量:8
9
作者 于淑侠 胡良梅 +1 位作者 张骏 张旭东 《计算机应用研究》 CSCD 北大核心 2020年第8期2541-2546,共6页
针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不... 针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不同卷积层提取的特征连接起来作为此通道最后一层卷积层的输入,有益于局部特征和全局特征的结合。接着,通过将不同通道融合后的特征输入亚像素卷积实现超分辨率重建。实验结果表明,相比其他方法,该方法得到的超分辨率图像缓解了边缘失真和伪影问题,有较好的视觉效果。 展开更多
关键词 深度图像 超分辨率重建 双通道卷积神经网络 金字塔式网络结构
下载PDF
基于视频分段的空时双通道卷积神经网络的行为识别 被引量:8
10
作者 王萍 庞文浩 《计算机应用》 CSCD 北大核心 2019年第7期2081-2086,共6页
针对原始空时双通道卷积神经网络(CNN)模型对长时段复杂视频中行为识别率低的问题,提出了一种基于视频分段的空时双通道卷积神经网络的行为识别方法。首先将视频分成多个等长不重叠的分段,对每个分段随机采样得到代表视频静态特征的帧... 针对原始空时双通道卷积神经网络(CNN)模型对长时段复杂视频中行为识别率低的问题,提出了一种基于视频分段的空时双通道卷积神经网络的行为识别方法。首先将视频分成多个等长不重叠的分段,对每个分段随机采样得到代表视频静态特征的帧图像和代表运动特征的堆叠光流图像;然后将这两种图像分别输入到空域和时域卷积神经网络进行特征提取,再在两个通道分别融合各视频分段特征得到空域和时域的类别预测特征;最后集成双通道的预测特征得到视频行为识别结果。通过实验讨论了多种数据增强方法和迁移学习方案以解决训练样本不足导致的过拟合问题,分析了不同分段数、预训练网络、分段特征融合方案和双通道集成策略对行为识别性能的影响。实验结果显示所提模型在UCF101数据集上的行为识别准确率达到91.80%,比原始的双通道模型提高了3.8个百分点;同时在HMDB51数据集上的行为识别准确率也比原模型提高,达到61.39%,这表明所提模型能够更好地学习和表达长时段复杂视频中人体行为特征。 展开更多
关键词 双通道卷积神经网络 行为识别 视频分段 迁移学习 特征融合
下载PDF
基于双通道卷积神经网络的多标签图像标注 被引量:6
11
作者 陈立潮 武晨燕 +2 位作者 曹建芳 潘理虎 张英俊 《计算机工程与设计》 北大核心 2019年第12期3601-3607,共7页
针对图像语义标注中存在的训练样本不均衡导致低频标注词标注准确率低的问题,提出一种双通道卷积神经网络模型(double channel convolution neural network,DCCNN)。其中一个通道是为训练低频样本设立的,以此提高低频样本在整个模型中... 针对图像语义标注中存在的训练样本不均衡导致低频标注词标注准确率低的问题,提出一种双通道卷积神经网络模型(double channel convolution neural network,DCCNN)。其中一个通道是为训练低频样本设立的,以此提高低频样本在整个模型中所占比重,另一个通道用于训练全部的训练集。在标注过程中把两个通道的输出进行融合,对所需标注的标注词共同做出决策。在Pascal VOC2012标准数据集上对模型进行验证,实验结果表明,DCCNN模型相对于卷积神经网络(convolution neural network,CNN)无论是对低频标注词的标注准确率还是效率都有很大的提升,验证了该模型的有效性。 展开更多
关键词 图像标注 卷积神经网络 样本不均衡 多标签 双通道卷积神经网络
下载PDF
基于双通道卷积神经网络的雷达信号识别 被引量:5
12
作者 全大英 陈赟 +3 位作者 唐泽雨 李世通 汪晓锋 金小萍 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第7期877-885,共9页
为解决在低信噪比下特征提取困难、雷达信号识别率低的问题,提出了一种基于Choi-Williams分布(CWD)和多重同步压缩变换(MSST)的双通道卷积神经网络模型.模型通过对雷达信号进行CWD和MSST时频分析,分别获取二维时频图像并进行预处理,然... 为解决在低信噪比下特征提取困难、雷达信号识别率低的问题,提出了一种基于Choi-Williams分布(CWD)和多重同步压缩变换(MSST)的双通道卷积神经网络模型.模型通过对雷达信号进行CWD和MSST时频分析,分别获取二维时频图像并进行预处理,然后送入双通道卷积神经网络进行深度特征提取,最后将两路通道获取的特征进行融合,通过卷积神经网络分类器实现对雷达信号的分类识别.仿真结果表明:在信噪比为-10 dB时,所提模型整体识别准确率能达到96%以上,其在低信噪比下表现优异. 展开更多
关键词 低信噪比 Choi-Williams分布 多重同步压缩变换 双通道卷积神经网络
下载PDF
双通道卷积神经网络人脸表情识别 被引量:5
13
作者 张琳琳 陈志雨 张啸 《长春工业大学学报》 CAS 2019年第2期142-148,共7页
将卷积神经网络的单通道全连接层改为双通道,构建并训练了一个新的双通道卷积神经网络模型以增强模型的特征表达能力。在全连接层用Maxout激活函数代替传统的ReLU激活函数以优化网络内部结构。在网络训练过程中,采用A-Softmax损失,使卷... 将卷积神经网络的单通道全连接层改为双通道,构建并训练了一个新的双通道卷积神经网络模型以增强模型的特征表达能力。在全连接层用Maxout激活函数代替传统的ReLU激活函数以优化网络内部结构。在网络训练过程中,采用A-Softmax损失,使卷积神经网络能够学习角度判别特征。改进后的卷积神经网络模型在FER2013数据集上准确率为73.6%。 展开更多
关键词 人脸表情识别 深度学习 双通道卷积神经网络 A-Softmax损失
下载PDF
基于时频融合多级注意力机制的双通道CNN轴承故障诊断模型
14
作者 冯新 陈儒晖 杨雄 《贵州大学学报(自然科学版)》 2024年第6期70-77,共8页
为进一步提高轴承故障诊断准确率,提出了一种基于快速傅里叶变换(fast fourier transform,FFT)和变分模态分解(variational mode decomposition,VMD),并融合多级注意力机制的双通道卷积神经网络(convolutional neural networks,CNN)模... 为进一步提高轴承故障诊断准确率,提出了一种基于快速傅里叶变换(fast fourier transform,FFT)和变分模态分解(variational mode decomposition,VMD),并融合多级注意力机制的双通道卷积神经网络(convolutional neural networks,CNN)模型用于滚动轴承故障诊断。首先,将一维故障信号经过FFT和VMD处理后进行堆叠,作为双通道CNN的输入;其次,将预处理后的数据分别通过基于通道注意力和全局注意力的二维CNN提取重要特征;再次,利用交叉注意力机制将两个通道提取的特征进行融合;最后,经过全连接层和softmax分类器进行故障诊断。试验结果表明:采用该方法在美国凯斯西储大学10类轴承故障数据集的平均准确率达到100%,其诊断精度优于常见的故障预测模型和单通道模型,有利于促进轴承的智能故障诊断研究和实际应用。 展开更多
关键词 故障诊断 时频融合 注意力机制 双通道卷积神经网络
下载PDF
基于多模态图像融合的DCCNN识别电能质量扰动
15
作者 余雷 刘宏伟 孟芸 《现代电子技术》 北大核心 2024年第3期137-142,共6页
为提高电力系统中电能质量扰动识别准确率,提出一种基于多模态图像融合的双通道卷积神经网络算法。首先,为降低传统格拉姆求和场生成特征图的冗余度,提出一种改进的格拉姆求和场;然后,通过改进的格拉姆求和场、马尔可夫转移场和无阈值... 为提高电力系统中电能质量扰动识别准确率,提出一种基于多模态图像融合的双通道卷积神经网络算法。首先,为降低传统格拉姆求和场生成特征图的冗余度,提出一种改进的格拉姆求和场;然后,通过改进的格拉姆求和场、马尔可夫转移场和无阈值递归图分别将电能质量扰动时序数据进行模态变换;其次,对转换生成的三类图像各提取出一个单通道灰度图进行融合;最后,将融合得到的特征图输入到双通道卷积神经网络中进行扰动识别。实验表明:多模态融合得到的特征图扰动特征保留更多,而且双通道卷积神经网络提取特征能力强,具有一定的抗噪鲁棒性,扰动识别准确率高。 展开更多
关键词 电能质量扰动 格拉姆求和场 马尔可夫转移场 无阈值递归图 双通道卷积神经网络 识别
下载PDF
基于图像融合和双通道卷积神经网络的配电网故障选线方法研究
16
作者 苏斌 侯思祖 郭威 《电子测量与仪器学报》 CSCD 北大核心 2024年第9期54-66,共13页
针对传统的配电网故障选线方法受限于单一的故障诊断模型,提出一种基于图像融合和双通道卷积神经网络的配电网故障选线方法。研究目的是解决现有方法在面对高阻接地、噪声干扰、分布式电源接地、采样时间不同步等复杂工况时的准确性问... 针对传统的配电网故障选线方法受限于单一的故障诊断模型,提出一种基于图像融合和双通道卷积神经网络的配电网故障选线方法。研究目的是解决现有方法在面对高阻接地、噪声干扰、分布式电源接地、采样时间不同步等复杂工况时的准确性问题。首先,利用格拉姆角和场和格拉姆角差场将零序电流信号转成易于区分故障的二维图像,为图像处理提供了基础。其次,通过图像融合技术将GASF图像和GADF图像进行空间域图像融合,得到一张综合特征图像,充分利用了不同图像的特征,提高了特征表达的丰富性和有效性。接着,构建双通道卷积神经网络模型,其中一维卷积神经网络和ResNet50网络分别用于挖掘零序电流信号和格拉姆角场图像的特征。这种设计充分发挥了不同卷积神经网络在处理一维信号和二维图像时的优势。最后,将融合后的特征输入到Sigmoid函数实现故障线路的筛选。实验结果表明,该方法在各种复杂工况下的表现均优于传统方法,其准确率、Kappa系数、马修斯相关系数、召回率分别达到了99.97%、0.9993、0.9993、0.9995。这些结果表明,该方法不仅具有较高的准确性,还具有良好的鲁棒性和稳定性,能够有效应对高阻接地、噪声干扰、分布式电源接地和采样时间不同步等实际应用中的挑战。提出的方法为配电网故障选线提供了一种新颖且高效的解决方案,具有重要的实际应用价值和广泛的推广前景。 展开更多
关键词 格拉姆角场 故障选线 图像融合 双通道卷积神经网络
下载PDF
基于声振信号融合的设备智能诊断
17
作者 赵春旭 张学亮 +3 位作者 刘思良 戚雯雯 王村松 张泉灵 《组合机床与自动化加工技术》 北大核心 2024年第7期98-102,108,共6页
单一传感器检测易受外界干扰或自身故障等多种因素限制导致滚动轴承故障诊断结果欠佳一直是设备智能诊断领域难点问题。针对上述问题,提出了一种基于声振信号融合的智能诊断方法。首先,通过传感器配置采集滚动轴承的振动信号和声音信号... 单一传感器检测易受外界干扰或自身故障等多种因素限制导致滚动轴承故障诊断结果欠佳一直是设备智能诊断领域难点问题。针对上述问题,提出了一种基于声振信号融合的智能诊断方法。首先,通过传感器配置采集滚动轴承的振动信号和声音信号;然后,利用变分模态分解(variational mode decomposition,VMD)对振动信号和声音信号进行分解与重构;随后,将重构后的声振信号输入双通道卷积神经网络(dual-channel convolutional neural network,DCNN)实现故障特征提取与特征融合;最后,将提取和融合的故障特征输入至DCNN网络SoftMax层进行故障分类建模。结果表明,与基于单一振动信号的CNN故障诊断模型相比,提出的基于声振信号融合的故障诊断方法准确率可以达到99.3%,融合后的特征更能有效区分设备不同的故障状态。 展开更多
关键词 声振融合 故障诊断 变模态分解 滚动轴承 双通道卷积神经网络
下载PDF
基于双通道卷积神经网络的视频目标移除取证算法 被引量:3
18
作者 白珊山 倪蓉蓉 赵耀 《信号处理》 CSCD 北大核心 2020年第9期1415-1421,共7页
针对现有数字视频目标移除取证算法的伪造帧识别准确率低的问题,本文提出了一种基于双通道卷积神经网络的视频目标移除取证算法。该算法利用双通道结构,分别提取视频绝对帧差图像的RGB特征和噪声特征,并利用双线性池化对二者进行特征融... 针对现有数字视频目标移除取证算法的伪造帧识别准确率低的问题,本文提出了一种基于双通道卷积神经网络的视频目标移除取证算法。该算法利用双通道结构,分别提取视频绝对帧差图像的RGB特征和噪声特征,并利用双线性池化对二者进行特征融合,而后通过分类层输出视频帧的分类结果,从而有效地识别经过篡改的视频帧。其中,RGB通道能够发现绝对帧差图像中不自然的篡改边界和对比度,噪声通道能够发现原始区域和篡改区域之间噪声的不一致性。此外,算法在网络前端增加了预处理层来放大篡改视频帧的伪造痕迹。实验结果显示,所提算法有效地提高了伪造视频帧的识别准确率,且相对于传统的单通道网络结构,双通道特征融合的方式取得了更好的检测性能。 展开更多
关键词 数字视频取证 视频目标移除取证 双通道卷积神经网络 Inception-v3网络
下载PDF
基于时频图与双通道卷积神经网络的轴承故障识别模型 被引量:2
19
作者 张政君 井陆阳 +2 位作者 徐卫晓 战卫侠 王晓昆 《机电工程》 CAS 北大核心 2023年第12期1889-1897,共9页
采用传统的信号处理方法难以从轴承振动信号中提取能全面准确反映轴承运行状态的故障特征,并且实际工程中采集的数据量难以满足深度学习方法的要求(需要较大数据量),针对这些问题,提出了一种基于时频图与双通道卷积神经网络(CNN)的轴承... 采用传统的信号处理方法难以从轴承振动信号中提取能全面准确反映轴承运行状态的故障特征,并且实际工程中采集的数据量难以满足深度学习方法的要求(需要较大数据量),针对这些问题,提出了一种基于时频图与双通道卷积神经网络(CNN)的轴承故障识别模型(方法)。首先,基于样本熵和峭度,构造了新的目标函数,利用灰狼优化算法(GWO)对变分模态分解(VMD)方法进行了参数优化,当目标函数达到最小值时,得到了其最优参数组合;然后,使用经过参数优化后的变分模态分解(VMD)方法对轴承信号进行了处理,将处理后得到的模态分量进行了平滑伪Wigner Ville分布(SPWVD)计算,累加其计算结果后,最终得到了轴承的时频图;其次,利用连续小波变换(CWT)直接对原始信号处理得到了时频图;最后,将采用两种方式得到的时频图分别作为双通道CNN的输入,对网络进行了训练,由CNN提取了其时频图特征,并对轴承故障进行了识别分类和诊断。实验结果表明:采用该方法在轴承故障实验中得到的准确率为99.69%,在10次实验中的平均准确率达到了99.61%,相比于单通道CNN和支持向量机(SVM)等方法,该方法有着更高的准确率和更出色的稳定性。研究结果表明:将该方法应用在轴承故障诊断领域,具有准确率高、稳定性强的特点,能够有效地诊断轴承故障。 展开更多
关键词 时频分析方法 变分模态分解 平滑伪Wigner-Ville分布 连续小波变换 双通道卷积神经网络 灰狼优化算法
下载PDF
双通道卷积神经网络在影像融合中的应用 被引量:2
20
作者 靳道明 李路沙 《地理空间信息》 2023年第11期1-4,共4页
利用Landsat8遥感卫星影像数据制作影像融合数据集,提出了一种双通道融合网络,并利用结果影像的质量指数对网络融合性能进行评估,分析与双三次卷积插值和GS影像融合方法的差异。结果表明,该网络加强了对高频空间信息的提取,在更高效提... 利用Landsat8遥感卫星影像数据制作影像融合数据集,提出了一种双通道融合网络,并利用结果影像的质量指数对网络融合性能进行评估,分析与双三次卷积插值和GS影像融合方法的差异。结果表明,该网络加强了对高频空间信息的提取,在更高效提取空间特征的同时,减弱了融合过程中对多光谱影像光谱特征的影响,从而提高了融合影像的综合影像质量(QNR=0.8852)。 展开更多
关键词 深度学习 遥感影像融合 双通道卷积神经网络 多尺度特征
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部