由于汽车排气管在实际运行环境中受到复杂交变载荷,单轴的疲劳试验不能准确预测试件的疲劳寿命。双轴的协同加载能更好地模拟实际工况,但需要对两个轴力传感器输出信号的幅值和相位差进行精确控制。因此,针对排气管双轴动态加载的需求,...由于汽车排气管在实际运行环境中受到复杂交变载荷,单轴的疲劳试验不能准确预测试件的疲劳寿命。双轴的协同加载能更好地模拟实际工况,但需要对两个轴力传感器输出信号的幅值和相位差进行精确控制。因此,针对排气管双轴动态加载的需求,研发一种力控制的电液伺服式双轴疲劳试验加载装置,并设计基于PXI总线结构和多DSP并行处理技术的多轴伺服控制器,基于伺服闭环和外环驱动谱修正相结合的控制算法,实现了双通道正弦波的幅值相位控制。为验证算法的性能,两通道参考信号均采用频率为10 Hz,幅值为2. 363 k N的正弦波,并且相位差为90°,对排气管进行双轴疲劳试验。试验结果表明:该双轴力加载系统能精确地跟踪参考信号的幅值和相位差。展开更多
文摘由于汽车排气管在实际运行环境中受到复杂交变载荷,单轴的疲劳试验不能准确预测试件的疲劳寿命。双轴的协同加载能更好地模拟实际工况,但需要对两个轴力传感器输出信号的幅值和相位差进行精确控制。因此,针对排气管双轴动态加载的需求,研发一种力控制的电液伺服式双轴疲劳试验加载装置,并设计基于PXI总线结构和多DSP并行处理技术的多轴伺服控制器,基于伺服闭环和外环驱动谱修正相结合的控制算法,实现了双通道正弦波的幅值相位控制。为验证算法的性能,两通道参考信号均采用频率为10 Hz,幅值为2. 363 k N的正弦波,并且相位差为90°,对排气管进行双轴疲劳试验。试验结果表明:该双轴力加载系统能精确地跟踪参考信号的幅值和相位差。