Based on the Particle Flow Code(PFC^(2D)) program,we set up gangue backfill models with different gangue contents and bond strength,and studied the stress-strain behaviours,the pattern of shear band and force chains,m...Based on the Particle Flow Code(PFC^(2D)) program,we set up gangue backfill models with different gangue contents and bond strength,and studied the stress-strain behaviours,the pattern of shear band and force chains,motion and fragmentation of particles under biaxial compression.The results show that when the bond strength or contents of gangue are high,the peak strength is high and the phenomena of post-peak softening and fluctuation are obvious.When gangue contents are low,the shape of the shear band is symmetrical and most strong force chains transfer in soil particles.With an increase in gangue content,the shape of the shear band becomes irregular and the majority of strong force chains turn to transfer in gangue particles gradually,most of which distribute along the axial direction.When the gangue content is higher than 50%,the interconnectivity of strong force chains decreases gradually:at the same time,the strong force chains become tilted and the stability of the system tends to decrease.With an increase in external loading,the coordination numbers of the system increase at first and then decrease and the main pattern of force chains changes into columnar from annular.However,after the forming of the advantageous shear band,the force chains external to the shear band maintain their columnar shape while the inner ones bend obviously.As a result,annular force chains form.展开更多
Experimental investigation was conducted to characterize the responses of pseudo-ductile cementitious composites (PDCCs) when subjected to uniaxial and biaxial compression.The PDCCs is a class of fiber reinforced ceme...Experimental investigation was conducted to characterize the responses of pseudo-ductile cementitious composites (PDCCs) when subjected to uniaxial and biaxial compression.The PDCCs is a class of fiber reinforced cementitious composites with ultra-high ductility by using a low volume fraction (2%) of polyvinyl alcohol (PVA) fiber.Two different strength grades of PDCC were examined with cubic specimen size of 100 mm in the tests.The specimens were loaded with a servo-hydraulic jack at different stress ratios.The principle stresses and strains of the specimens were recorded,and the failure modes with various stress states were examined.The test results indicated that the ultimate strength of PDCCs increased due to the lateral confinement in the other principal stress direction,and the maximum ultimate strength occurred at the biaxial stress ratio of 0.25,which was very different from common concrete material.For the PDCC specimens,the biaxial strength may be lower than the uniaxial strength when subjected to biaxial compression with the stress ratio of 1.0,and the failure mode showed a shear-type failure because of the bridging effect of fibers.Finally,a failure criterion was proposed for PDCCs under biaxial compression.展开更多
Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-cr...Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-crack structure,this study researches the influence of lateral pressure on the mechanical behavior of different rock types.Four rock types have been tested and the formation mechanism of macro-fracture surface is analyzed.Results indicate that the brittleness and burst proneness of rock or coal material are stronger than that of gypsum material due to the different mineral compositions and structures.When the lateral pressure is less than 10%uniaxial strength,the peak stress and elastic modulus increase with the increase of lateral pressure;but when the lateral pressure is larger than 10%uniaxial strength,the two parameters decrease slightly or keep steady.This is because when the lateral pressure reaches a certain value,local failure will be formed during the process of applying lateral pressure.Under the condition of low lateral pressure,the failure of the specimen is dominated by the tensile mechanism;under the condition of relatively high lateral pressure,the area of the specimen close to the free surface is tensile splitting failure,and the area far from the free surface is shear failure.展开更多
Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones aro...Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Nos.2010QNB25 and 2012LWB66)the National Natural Science Foundation of China(Nos.51323004,51074163 and 50834005)+1 种基金the Trans-Century Training Programme Foundation for the Talents by the State Education Commission(No.NCET-08-0837)the"Six Major Talent"Plan of Jiangsu Province and the Graduate Innovation Fund Project of Jiangsu Province(No.CXZZ13_0924)
文摘Based on the Particle Flow Code(PFC^(2D)) program,we set up gangue backfill models with different gangue contents and bond strength,and studied the stress-strain behaviours,the pattern of shear band and force chains,motion and fragmentation of particles under biaxial compression.The results show that when the bond strength or contents of gangue are high,the peak strength is high and the phenomena of post-peak softening and fluctuation are obvious.When gangue contents are low,the shape of the shear band is symmetrical and most strong force chains transfer in soil particles.With an increase in gangue content,the shape of the shear band becomes irregular and the majority of strong force chains turn to transfer in gangue particles gradually,most of which distribute along the axial direction.When the gangue content is higher than 50%,the interconnectivity of strong force chains decreases gradually:at the same time,the strong force chains become tilted and the stability of the system tends to decrease.With an increase in external loading,the coordination numbers of the system increase at first and then decrease and the main pattern of force chains changes into columnar from annular.However,after the forming of the advantageous shear band,the force chains external to the shear band maintain their columnar shape while the inner ones bend obviously.As a result,annular force chains form.
基金supported by the National Natural Science Foundation of China (Grant No. 51278118)the National Basic Research Program of China ("973" Program) (Grant No. 2009CB623200)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Experimental investigation was conducted to characterize the responses of pseudo-ductile cementitious composites (PDCCs) when subjected to uniaxial and biaxial compression.The PDCCs is a class of fiber reinforced cementitious composites with ultra-high ductility by using a low volume fraction (2%) of polyvinyl alcohol (PVA) fiber.Two different strength grades of PDCC were examined with cubic specimen size of 100 mm in the tests.The specimens were loaded with a servo-hydraulic jack at different stress ratios.The principle stresses and strains of the specimens were recorded,and the failure modes with various stress states were examined.The test results indicated that the ultimate strength of PDCCs increased due to the lateral confinement in the other principal stress direction,and the maximum ultimate strength occurred at the biaxial stress ratio of 0.25,which was very different from common concrete material.For the PDCC specimens,the biaxial strength may be lower than the uniaxial strength when subjected to biaxial compression with the stress ratio of 1.0,and the failure mode showed a shear-type failure because of the bridging effect of fibers.Finally,a failure criterion was proposed for PDCCs under biaxial compression.
基金Project(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(ZR2019ZD13)supported by the Major Program of Shandong Provincial Natural Science Foundation,China。
文摘Lots of field investigations have proven that layer-crack structure usually appears during the excavation process of deep rock or coal mass.To provide experimental data for studying the formation mechanism of layer-crack structure,this study researches the influence of lateral pressure on the mechanical behavior of different rock types.Four rock types have been tested and the formation mechanism of macro-fracture surface is analyzed.Results indicate that the brittleness and burst proneness of rock or coal material are stronger than that of gypsum material due to the different mineral compositions and structures.When the lateral pressure is less than 10%uniaxial strength,the peak stress and elastic modulus increase with the increase of lateral pressure;but when the lateral pressure is larger than 10%uniaxial strength,the two parameters decrease slightly or keep steady.This is because when the lateral pressure reaches a certain value,local failure will be formed during the process of applying lateral pressure.Under the condition of low lateral pressure,the failure of the specimen is dominated by the tensile mechanism;under the condition of relatively high lateral pressure,the area of the specimen close to the free surface is tensile splitting failure,and the area far from the free surface is shear failure.
基金supported by the National Basic Research Program of China (No.2013CB036003)the Graduate Research and Innovation Program of Jiangsu Province (No.CXLX13_943)
文摘Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.