To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upse...To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upset-resilient cells,which are identically mainly constructed from three mutually feeding back 2-input C-elements,the latch achieves double-node-upset-resilience.Using smaller transistor sizes,clock-gating technology,and high-speed transmission-path,the cost of the latch is effectively reduced.Simulation results demonstrate the double-node-upset-resilience of the latch and also show that compared with the up-to-date double-node-upset-resilient latches,the proposed latch reduces the transmission delay by 72.54%,the power dissipation by 33.97%,and the delay-power-area product by 78.57%,while the average cost of the silicon area is only increased by 16.45%.展开更多
提出一种新颖的单粒子效应加固输入接口电路,采用组合逻辑延迟后运算处理的方案。该电路基于华润上华600 V BCD 0.8μm工艺进行电路设计和流片,并在中科院国家空间科学中心完成单粒子辐照测试。仿真测试结果表明,提出的输入接口电路可...提出一种新颖的单粒子效应加固输入接口电路,采用组合逻辑延迟后运算处理的方案。该电路基于华润上华600 V BCD 0.8μm工艺进行电路设计和流片,并在中科院国家空间科学中心完成单粒子辐照测试。仿真测试结果表明,提出的输入接口电路可以有效免疫线性能量传递值(LET)在80 MeV·cm2/mg以下单粒子翻转(SEU)事件,特别是对多个节点同时发生单粒子翻转事件的情况,提出的电路抗单粒子翻转可靠性较高。展开更多
基金The National Natural Science Foundation of China(No.61604001)the Doctor Startup Fund of Anhui University(No.J01003217)
文摘To effectively tolerate a double-node upset,a novel double-node-upset-resilient radiation-hardened latch is proposed in 22 nm complementary-metal-oxide-semiconductor technology.Using three interlocked single-node-upset-resilient cells,which are identically mainly constructed from three mutually feeding back 2-input C-elements,the latch achieves double-node-upset-resilience.Using smaller transistor sizes,clock-gating technology,and high-speed transmission-path,the cost of the latch is effectively reduced.Simulation results demonstrate the double-node-upset-resilience of the latch and also show that compared with the up-to-date double-node-upset-resilient latches,the proposed latch reduces the transmission delay by 72.54%,the power dissipation by 33.97%,and the delay-power-area product by 78.57%,while the average cost of the silicon area is only increased by 16.45%.
文摘提出一种新颖的单粒子效应加固输入接口电路,采用组合逻辑延迟后运算处理的方案。该电路基于华润上华600 V BCD 0.8μm工艺进行电路设计和流片,并在中科院国家空间科学中心完成单粒子辐照测试。仿真测试结果表明,提出的输入接口电路可以有效免疫线性能量传递值(LET)在80 MeV·cm2/mg以下单粒子翻转(SEU)事件,特别是对多个节点同时发生单粒子翻转事件的情况,提出的电路抗单粒子翻转可靠性较高。