This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis ...This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis employs the parametric surface-electric-potential and the electrochemical (quasi-Fermi) potential-gradient driving force to compute the current. Output and transfer D. C. current and conductance versus voltage are presented over practi- cal ranges of terminal D. C. voltages and device parameters. Electron and hole surface channel currents are pres- ent simultaneously, a new feature which could provide circuit functions in one physical transistor such as the CMOS inverter and SRAM memory.展开更多
This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obt...This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.展开更多
文摘This paper describes the bipolar field-effect transistor (BiFET) and its theory. Analytical solution is ob- tained from partitioning the two-dimensional transistor into two one-dimensional transistors. The analysis employs the parametric surface-electric-potential and the electrochemical (quasi-Fermi) potential-gradient driving force to compute the current. Output and transfer D. C. current and conductance versus voltage are presented over practi- cal ranges of terminal D. C. voltages and device parameters. Electron and hole surface channel currents are pres- ent simultaneously, a new feature which could provide circuit functions in one physical transistor such as the CMOS inverter and SRAM memory.
文摘This paper describes the drift-diffusion theory of the bipolar field-effect transistor (BiFET) with two identical and connected metal-oxide-silicon-gates (MOS-gates) on a thin-pure-base. Analytical solution is obtained by partitioning the two-dimensional transistor into two one-dimensional problems coupled by the parametric sur- face-electric-potential. Total and component output and transfer currents and conductances versus D. C. voltages from the drift-diffusion theory, and their deviations from the electrochemical (quasi-Fermi) potential-gradient theory,are presented over practical ranges of thicknesses of the silicon base and gate oxide. A substantial contri- bution from the longitudinal gradient of the square of the transverse electric field is shown.